We prove that the set of symplectic lattices in the Siegel space whose systoles generate a subspace of dimension at least 3 in does not contain any -equivariant deformation retract of .
Nous montrons que l'ensemble des réseaux symplectiques dans l'espace de Siegel dont les systoles engendrent un sous-espace de dimension au moins 3 dans ne contient aucun rétract par déformation -équivariant de .
Accepted:
Published online:
Cyril Lacoste 1
@article{CRMATH_2018__356_2_141_0, author = {Cyril Lacoste}, title = {On the difficulty of finding spines}, journal = {Comptes Rendus. Math\'ematique}, pages = {141--145}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2018.01.007}, language = {en}, }
Cyril Lacoste. On the difficulty of finding spines. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 141-145. doi : 10.1016/j.crma.2018.01.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.007/
[1] Geometric dimension of lattices in classical simple Lie groups, J. Topol., Volume 10 (2017), pp. 632-667
[2] Small-dimensional classifying spaces for arithmetic subgroups of general linear groups, Duke Math. J., Volume 51 (1984) no. 2, pp. 459-468
[3] Cohomology at infinity and the well-rounded retract for general linear groups, Duke Math. J., Volume 90 (1997) no. 3, pp. 549-576
[4] Classes minimales de réseaux et rétractions géométriques équivariantes dans les espaces symétriques, J. Lond. Math. Soc. (2), Volume 64 (2001), pp. 275-286
[5] Systole et invariant d'Hermite, J. Reine Angew. Math., Volume 482 (1997), pp. 93-120
[6] Corners and arithmetic groups, Comment. Math. Helv., Volume 48 (1973), pp. 436-491
[7] On the integral homology of and other arithmetic groups, J. Number Theory, Volume 131 (2011) no. 12, pp. 2368-2375
[8] The cohomology of , K-Theory, Volume 16 (1999) no. 4, pp. 299-359
[9] Automorphisms of the unimodular group, Trans. Amer. Math. Soc., Volume 71 (1951), pp. 331-348
[10] Well-rounded equivariant deformation retracts of Teichmüller spaces, Enseign. Math., Volume 60 (2014) no. 1–2, pp. 109-129
[11] Dimension rigidity of lattices in semisimple Lie groups, 2016 (to appear in “Groups, Geometry and Dynamics”) | arXiv
[12] Explicit reduction theory for Siegel modular threefolds, Invent. Math., Volume 111 (1993), pp. 575-625
[13] Les réseaux parfaits des espaces euclidiens, Masson, 1996
[14] The spine which was no spine, Enseign. Math. (2), Volume 54 (2008) no. 3–4, pp. 273-285
[15] Minimality of the well-rounded retract, Geom. Topol., Volume 12 (2008) no. 3, pp. 1543-1556
[16] The cohomology of , Topology, Volume 17 (1978) no. 1, pp. 1-22
[17] Thèse de doctorat d'État, Université Paris-7, 1978
[18] On the existence of spines for -rank 1 groups, Sel. Math. New Ser., Volume 12 (2006) no. 3–4, pp. 541-564
Cited by Sources:
Comments - Policy