[Les
A finite group G is called a
Un groupe fini G est appelé un
Accepté le :
Publié le :
Mozhgan Rezakhanlou 1 ; Mohammad Reza Darafsheh 2
@article{CRMATH_2018__356_2_138_0, author = {Mozhgan Rezakhanlou and Mohammad Reza Darafsheh}, title = {Metabelian $ {\mathbb{Q}}_{1}$-groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {138--140}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2017.10.017}, language = {en}, }
Mozhgan Rezakhanlou; Mohammad Reza Darafsheh. Metabelian $ {\mathbb{Q}}_{1}$-groups. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 138-140. doi : 10.1016/j.crma.2017.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.017/
[1] Rational non-linear characters of metabelian groups, Proc. Amer. Math. Soc., Volume 85 (1982) no. 2, pp. 175-180
[2] Characters of Finite Groups, Part I, Trans. Math. Monographs, vol. 172, American Mathematical Society, Providence, RI, USA, 1997
[3] Atlas of Finite Groups, Oxford University Press, 1985
[4] Groups whose non-linear irreducible characters are rational valued, Arch. Math. (Basel), Volume 94 (2010) no. 5, pp. 411-418
[5] On finite rational groups and related topics, Ill. J. Math., Volume 33 (1988) no. 1, pp. 103-131
[6] Character Theory of Finite Groups, Academic Press, 1976
[7] Structure and Representations of Q-Groups, Lecture Notes in Mathematics, vol. 1084, Springer-Verlag, 1984
[8] The vanishing-off subgroups, J. Algebra, Volume 321 (2009), pp. 1313-1325
[9] Sylow 2-subgroups of solvable
[10] M. Norooz-Abadian, H. Sharifi, Some results about
- The Rationality of Sylow 2-Subgroups of Solvable
-Groups, Bulletin of the Iranian Mathematical Society, Volume 48 (2022) no. 6, p. 3117 | DOI:10.1007/s41980-022-00686-z
Cité par 1 document. Sources : Crossref
Commentaires - Politique