A finite group G is called a -group if all of its non-linear irreducible characters are rational valued. In this paper, we will find the general structure of a metabelian -group.
Un groupe fini G est appelé un -groupe si les valeurs des caractères non linéaires sont rationnelles. Dans cet article, nous déterminons la structure des -groupes métabéliens.
Accepted:
Published online:
Mozhgan Rezakhanlou 1; Mohammad Reza Darafsheh 2
@article{CRMATH_2018__356_2_138_0, author = {Mozhgan Rezakhanlou and Mohammad Reza Darafsheh}, title = {Metabelian $ {\mathbb{Q}}_{1}$-groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {138--140}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2017.10.017}, language = {en}, }
Mozhgan Rezakhanlou; Mohammad Reza Darafsheh. Metabelian $ {\mathbb{Q}}_{1}$-groups. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 138-140. doi : 10.1016/j.crma.2017.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.017/
[1] Rational non-linear characters of metabelian groups, Proc. Amer. Math. Soc., Volume 85 (1982) no. 2, pp. 175-180
[2] Characters of Finite Groups, Part I, Trans. Math. Monographs, vol. 172, American Mathematical Society, Providence, RI, USA, 1997
[3] Atlas of Finite Groups, Oxford University Press, 1985
[4] Groups whose non-linear irreducible characters are rational valued, Arch. Math. (Basel), Volume 94 (2010) no. 5, pp. 411-418
[5] On finite rational groups and related topics, Ill. J. Math., Volume 33 (1988) no. 1, pp. 103-131
[6] Character Theory of Finite Groups, Academic Press, 1976
[7] Structure and Representations of Q-Groups, Lecture Notes in Mathematics, vol. 1084, Springer-Verlag, 1984
[8] The vanishing-off subgroups, J. Algebra, Volume 321 (2009), pp. 1313-1325
[9] Sylow 2-subgroups of solvable -groups, C. R. Acad. Sci. Paris, Ser. I (2016), pp. 1-4
[10] M. Norooz-Abadian, H. Sharifi, Some results about -groups, in press.
Cited by Sources:
Comments - Policy