For each , we consider the integral equation:
There exists some non-trivial solutions ([1]). We show in this work that the dimension of the set of solutions is at most two.
Nous considérons les équations intégrales de la forme suivante pour :
Il existe des solutions non triviales à ces équations ([1]). Nous montrons dans ce travail que l'espace des solutions est de dimension au plus 2.
Accepted:
Published online:
Jean-François Bertazzon 1
@article{CRMATH_2018__356_3_235_0, author = {Jean-Fran\c{c}ois Bertazzon}, title = {Majoration of the dimension of the space of concatenated solutions to a specific pantograph equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {235--242}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.01.013}, language = {en}, }
TY - JOUR AU - Jean-François Bertazzon TI - Majoration of the dimension of the space of concatenated solutions to a specific pantograph equation JO - Comptes Rendus. Mathématique PY - 2018 SP - 235 EP - 242 VL - 356 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2018.01.013 LA - en ID - CRMATH_2018__356_3_235_0 ER -
Jean-François Bertazzon. Majoration of the dimension of the space of concatenated solutions to a specific pantograph equation. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 235-242. doi : 10.1016/j.crma.2018.01.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.013/
[1] Sommes de Birkhoff itérées sur des extensions finies d'odomètres. Construction de solutions auto-similaires à des équations différentielles avec délai, Bull. Soc. Math. Fr. (2018) (in press)
[2] On bounded solutions of the balanced generalized pantograph equation, Topics in Stochastic Analysis and Nonparametric Estimation, The IMA Volumes in Mathematics and its Applications, vol. 145, 2008, pp. 24-49
[3] A probabilistic example of a nowhere analytic -function, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 5 (1966) no. 2, pp. 173-174
[4] Variational iteration method for solving a generalized pantograph equation, Comput. Math. Appl., Volume 58 (2002) no. 11, pp. 2190-2196
[5] On the functional-differential equation of advanced type with , J. Math. Anal. Appl., Volume 37 (2006) no. 1, pp. 320-330
[6] On the functional-differential equation of advanced type , , with , J. Math. Anal. Appl., Volume 332 (2007) no. 1, pp. 487-496
Cited by Sources:
Comments - Policy