Recently, Dil and Boyadzhiev [10] proved an explicit formula for the sum of multiple harmonic numbers whose indices are the sequence . In this paper, we show that the sums of multiple harmonic numbers whose indices are the sequence can be expressed in terms of (multiple) zeta values, (multiple) harmonic numbers, and Stirling numbers of the first kind, and give an explicit formula.
Récemment, Dil et Boyadzhiev [10] ont établi une formule explicite pour les sommes de nombres hyper-harmoniques multiples, dont les indices sont les suites . Nous montrons ici que les sommes de nombres harmoniques multiples dont les indices sont peuvent être exprimées en termes de valeurs zêta (multiples), de nombres harmoniques (multiples) et de nombres de Stirling de première espèce. Nous donnons une formule explicite.
Accepted:
Published online:
Ce Xu 1
@article{CRMATH_2018__356_3_243_0, author = {Ce Xu}, title = {Computation and theory of {Euler} sums of generalized hyperharmonic numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {243--252}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.01.004}, language = {en}, }
Ce Xu. Computation and theory of Euler sums of generalized hyperharmonic numbers. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 243-252. doi : 10.1016/j.crma.2018.01.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.004/
[1] Experimental evaluation of Euler sums, Exp. Math., Volume 3 (1994) no. 1, pp. 17-30
[2] A combinatorial approach to hyperharmonic numbers, Integers, Volume 3 (2003), pp. 1-9
[3] Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989
[4] Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc. (2), Volume 38 (1995), pp. 277-294
[5] Making sense of experimental mathematics, Math. Intell., Volume 18 (1996) no. 4, pp. 12-18
[6] Evaluation of triple Euler sums, Electron. J. Comb., Volume 3 (1996) no. 1, pp. 2-7
[7] The evaluation of character Euler double sums, Ramanujan J., Volume 15 (2008) no. 3, pp. 377-405
[8] Advanced Combinatorics, D Reidel Publishing Company, Boston, MA, USA, 1974
[9]
, Springer-Verlag, New York (1996), pp. 258-259[10] Euler sums of hyperharmonic numbers, J. Number Theory, Volume 147 (2015), pp. 490-498
[11] Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math., Volume 5 (2009) no. 2, pp. 212-229
[12] A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput., Volume 206 (2008), pp. 942-951
[13] Euler sums and contour integral representations, Exp. Math., Volume 7 (1998) no. 1, pp. 15-35
[14] Almost all hyperharmonic numbers are not integers, J. Number Theory, Volume 171 (2017), pp. 495-526
[15] New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner's series, Trans. Amer. Math. Soc., Volume 366 (2013) no. 6, pp. 3131-3159
[16] On a kind of duality of multiple zeta-star values, Int. J. Number Theory, Volume 8 (2010) no. 8, pp. 1927-1932
[17] Nonlinear Euler sums, Pac. J. Math., Volume 272 (2014), pp. 201-226
[18] Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, Volume 130 (2010), pp. 360-369
[19] Multiple zeta values of fixed weight, depth, and height, Indag. Math. (N.S.), Volume 12 (2001) no. 4, pp. 483-487
[20] Quadratic alternating harmonic number sums, J. Number Theory, Volume 154 (2015), pp. 144-159
[21] Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012
[22] Multiple zeta values and Euler sums, J. Number Theory, Volume 177 (2017), pp. 443-478
[23] Euler sums of generalized hyperharmonic numbers | arXiv
[24] Some results on Euler sums, Funct. Approx. Comment. Math., Volume 54 (2016) no. 1, pp. 25-37
[25] Euler sums and integrals of polylogarithm functions, J. Number Theory, Volume 165 (2016), pp. 84-108
[26] Some evaluation of harmonic number sums, Integral Transforms Spec. Funct., Volume 27 (2016) no. 12, pp. 937-955
[27] Evaluation of the multiple zeta values , Ann. of Math. (2), Volume 175 (2012) no. 2, pp. 977-1000
Cited by Sources:
Comments - Policy