Comptes Rendus
Number theory/Mathematical analysis
Computation and theory of Euler sums of generalized hyperharmonic numbers
Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 243-252.

Recently, Dil and Boyadzhiev [10] proved an explicit formula for the sum of multiple harmonic numbers whose indices are the sequence ({0}r,1). In this paper, we show that the sums of multiple harmonic numbers whose indices are the sequence ({0}r,1;{1}k1) can be expressed in terms of (multiple) zeta values, (multiple) harmonic numbers, and Stirling numbers of the first kind, and give an explicit formula.

Récemment, Dil et Boyadzhiev [10] ont établi une formule explicite pour les sommes de nombres hyper-harmoniques multiples, dont les indices sont les suites ({0}r,1). Nous montrons ici que les sommes de nombres harmoniques multiples dont les indices sont ({0}r,1;{1}k1) peuvent être exprimées en termes de valeurs zêta (multiples), de nombres harmoniques (multiples) et de nombres de Stirling de première espèce. Nous donnons une formule explicite.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.01.004

Ce Xu 1

1 School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
@article{CRMATH_2018__356_3_243_0,
     author = {Ce Xu},
     title = {Computation and theory of {Euler} sums of generalized hyperharmonic numbers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {243--252},
     publisher = {Elsevier},
     volume = {356},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crma.2018.01.004},
     language = {en},
}
TY  - JOUR
AU  - Ce Xu
TI  - Computation and theory of Euler sums of generalized hyperharmonic numbers
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 243
EP  - 252
VL  - 356
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2018.01.004
LA  - en
ID  - CRMATH_2018__356_3_243_0
ER  - 
%0 Journal Article
%A Ce Xu
%T Computation and theory of Euler sums of generalized hyperharmonic numbers
%J Comptes Rendus. Mathématique
%D 2018
%P 243-252
%V 356
%N 3
%I Elsevier
%R 10.1016/j.crma.2018.01.004
%G en
%F CRMATH_2018__356_3_243_0
Ce Xu. Computation and theory of Euler sums of generalized hyperharmonic numbers. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 243-252. doi : 10.1016/j.crma.2018.01.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.004/

[1] D.H. Bailey; J.M. Borwein; R. Girgensohn Experimental evaluation of Euler sums, Exp. Math., Volume 3 (1994) no. 1, pp. 17-30

[2] A.T. Benjamin; D. Gaebler; R. Gaebler A combinatorial approach to hyperharmonic numbers, Integers, Volume 3 (2003), pp. 1-9

[3] B.C. Berndt Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989

[4] D. Borwein; J.M. Borwein; R. Girgensohn Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc. (2), Volume 38 (1995), pp. 277-294

[5] J. Borwein; P. Borwein; R. Girgensohn; S. Parnes Making sense of experimental mathematics, Math. Intell., Volume 18 (1996) no. 4, pp. 12-18

[6] J.M. Borwein; R. Girgensohn Evaluation of triple Euler sums, Electron. J. Comb., Volume 3 (1996) no. 1, pp. 2-7

[7] J.M. Borwein; I.J. Zucker; J. Boersma The evaluation of character Euler double sums, Ramanujan J., Volume 15 (2008) no. 3, pp. 377-405

[8] L. Comtet Advanced Combinatorics, D Reidel Publishing Company, Boston, MA, USA, 1974

[9] J.H. Conway; R.K. Guy, Springer-Verlag, New York (1996), pp. 258-259

[10] A. Dil; K.N. Boyadzhiev Euler sums of hyperharmonic numbers, J. Number Theory, Volume 147 (2015), pp. 490-498

[11] A. Dil; V. Kurt Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math., Volume 5 (2009) no. 2, pp. 212-229

[12] A. Dil; I. Mezö A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput., Volume 206 (2008), pp. 942-951

[13] P. Flajolet; B. Salvy Euler sums and contour integral representations, Exp. Math., Volume 7 (1998) no. 1, pp. 15-35

[14] H. Göral; D. Sertbas Almost all hyperharmonic numbers are not integers, J. Number Theory, Volume 171 (2017), pp. 495-526

[15] K. Hessami Pilehrood; T. Hessami Pilehrood; R. Tauraso New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner's series, Trans. Amer. Math. Soc., Volume 366 (2013) no. 6, pp. 3131-3159

[16] M. Kaneko; Y. Ohno On a kind of duality of multiple zeta-star values, Int. J. Number Theory, Volume 8 (2010) no. 8, pp. 1927-1932

[17] I. Mezö Nonlinear Euler sums, Pac. J. Math., Volume 272 (2014), pp. 201-226

[18] I. Mezö; A. Dil Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, Volume 130 (2010), pp. 360-369

[19] Y. Ohno; D. Zagier Multiple zeta values of fixed weight, depth, and height, Indag. Math. (N.S.), Volume 12 (2001) no. 4, pp. 483-487

[20] A. Sofo Quadratic alternating harmonic number sums, J. Number Theory, Volume 154 (2015), pp. 144-159

[21] H.M. Srivastava; J. Choi Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012

[22] C. Xu Multiple zeta values and Euler sums, J. Number Theory, Volume 177 (2017), pp. 443-478

[23] C. Xu Euler sums of generalized hyperharmonic numbers | arXiv

[24] C. Xu; J. Cheng Some results on Euler sums, Funct. Approx. Comment. Math., Volume 54 (2016) no. 1, pp. 25-37

[25] C. Xu; Y. Yan; Z. Shi Euler sums and integrals of polylogarithm functions, J. Number Theory, Volume 165 (2016), pp. 84-108

[26] C. Xu; M. Zhang; W. Zhu Some evaluation of harmonic number sums, Integral Transforms Spec. Funct., Volume 27 (2016) no. 12, pp. 937-955

[27] D. Zagier Evaluation of the multiple zeta values ζ(2,...,2,3,2,...,2), Ann. of Math. (2), Volume 175 (2012) no. 2, pp. 977-1000

Cited by Sources:

Comments - Policy