[Théorie et calcul des sommes d'Euler des nombres hyper-harmoniques généralisés]
Recently, Dil and Boyadzhiev [10] proved an explicit formula for the sum of multiple harmonic numbers whose indices are the sequence
Récemment, Dil et Boyadzhiev [10] ont établi une formule explicite pour les sommes de nombres hyper-harmoniques multiples, dont les indices sont les suites
Accepté le :
Publié le :
Ce Xu 1
@article{CRMATH_2018__356_3_243_0, author = {Ce Xu}, title = {Computation and theory of {Euler} sums of generalized hyperharmonic numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {243--252}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.01.004}, language = {en}, }
Ce Xu. Computation and theory of Euler sums of generalized hyperharmonic numbers. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 243-252. doi : 10.1016/j.crma.2018.01.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.004/
[1] Experimental evaluation of Euler sums, Exp. Math., Volume 3 (1994) no. 1, pp. 17-30
[2] A combinatorial approach to hyperharmonic numbers, Integers, Volume 3 (2003), pp. 1-9
[3] Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989
[4] Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc. (2), Volume 38 (1995), pp. 277-294
[5] Making sense of experimental mathematics, Math. Intell., Volume 18 (1996) no. 4, pp. 12-18
[6] Evaluation of triple Euler sums, Electron. J. Comb., Volume 3 (1996) no. 1, pp. 2-7
[7] The evaluation of character Euler double sums, Ramanujan J., Volume 15 (2008) no. 3, pp. 377-405
[8] Advanced Combinatorics, D Reidel Publishing Company, Boston, MA, USA, 1974
[9]
, Springer-Verlag, New York (1996), pp. 258-259[10] Euler sums of hyperharmonic numbers, J. Number Theory, Volume 147 (2015), pp. 490-498
[11] Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math., Volume 5 (2009) no. 2, pp. 212-229
[12] A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput., Volume 206 (2008), pp. 942-951
[13] Euler sums and contour integral representations, Exp. Math., Volume 7 (1998) no. 1, pp. 15-35
[14] Almost all hyperharmonic numbers are not integers, J. Number Theory, Volume 171 (2017), pp. 495-526
[15] New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner's series, Trans. Amer. Math. Soc., Volume 366 (2013) no. 6, pp. 3131-3159
[16] On a kind of duality of multiple zeta-star values, Int. J. Number Theory, Volume 8 (2010) no. 8, pp. 1927-1932
[17] Nonlinear Euler sums, Pac. J. Math., Volume 272 (2014), pp. 201-226
[18] Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, Volume 130 (2010), pp. 360-369
[19] Multiple zeta values of fixed weight, depth, and height, Indag. Math. (N.S.), Volume 12 (2001) no. 4, pp. 483-487
[20] Quadratic alternating harmonic number sums, J. Number Theory, Volume 154 (2015), pp. 144-159
[21] Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012
[22] Multiple zeta values and Euler sums, J. Number Theory, Volume 177 (2017), pp. 443-478
[23] Euler sums of generalized hyperharmonic numbers | arXiv
[24] Some results on Euler sums, Funct. Approx. Comment. Math., Volume 54 (2016) no. 1, pp. 25-37
[25] Euler sums and integrals of polylogarithm functions, J. Number Theory, Volume 165 (2016), pp. 84-108
[26] Some evaluation of harmonic number sums, Integral Transforms Spec. Funct., Volume 27 (2016) no. 12, pp. 937-955
[27] Evaluation of the multiple zeta values
Cité par Sources :
Commentaires - Politique