Let f be an analytic function in a convex domain . A well-known theorem of Ozaki states that if f is analytic in D, and is given by for , and
Soit f une fonction analytique dans un domaine . Un théorème bien connu d'Ozaki affirme que, si f est analytique dans D, donnée par pour et
Accepted:
Published online:
Mamoru Nunokawa 1; Janusz Sokół 2; Derek K. Thomas 3
@article{CRMATH_2018__356_4_382_0, author = {Mamoru Nunokawa and Janusz Sok\'o{\l} and Derek K. Thomas}, title = {On {Ozaki's} condition for \protect\emph{p}-valency}, journal = {Comptes Rendus. Math\'ematique}, pages = {382--386}, publisher = {Elsevier}, volume = {356}, number = {4}, year = {2018}, doi = {10.1016/j.crma.2018.02.007}, language = {en}, }
Mamoru Nunokawa; Janusz Sokół; Derek K. Thomas. On Ozaki's condition for p-valency. Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 382-386. doi : 10.1016/j.crma.2018.02.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.02.007/
[1] On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap., Volume 2 (1934–1935) no. 1, pp. 129-135
[2] A note on multivalent functions, Tsukuba J. Math., Volume 13 (1989) no. 2, pp. 453-455
[3] On properties of non-Carathéodory functions, Proc. Jpn. Acad., Ser. A, Volume 68 (1992) no. 6, pp. 152-153
[4] On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku, Sect. A., Volume 2 (1935), pp. 167-188
[5] On close to-convex functions, Trans. Amer. Math. Soc., Volume 114 (1965) no. 1, pp. 176-186
[6] On certain univalent mapping, J. Math. Soc. Jpn., Volume 11 (1959), pp. 72-75
[7] Multivalently close-to-convex functions, Proc. Amer. Math. Soc., Volume 8 (1957) no. 5, pp. 869-874
[8] On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc., Volume 38 (1935), pp. 310-340
Cited by Sources:
Comments - Policy