Comptes Rendus
Probability theory
Scaling and non-standard matching theorems
[Mise à l'échelle et théorèmes d'appariement non-standard]
Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 692-695.

Considérons une suite indépendente (Xi)iN de variables aléatoires distribuées comme la mesure gaussienne canonique μ sur R2 et une copie independente (Yi)iN de cette même suite. Pour une certaine constante universelle C et N2, nous avons les inégalités

(logN)2CEinfπiNd(Xi,Yπ(i))2C(logN)2(1)
où l'infimum est pris sur toutes les permutations π de {1,,N}. La borne supérieure a été prouvée par Michel Ledoux (2017) [3], qui conjecturait que l'inégalité (1) était correcte avec un facteur logN et non pas (logN)2. C'est précisement l'apparence de ce facteur (logN)2 qui est non standard.

Consider the standard Gaussian measure μ on R2. Consider independent r.v.s (Xi)iN distributed according to μ, and an independent copy (Yi)iN of these r.v.s. We prove that, for some number C and N large, we have

(logN)2CEinfπiNd(Xi,Yπ(i))2C(logN)2,(1)
where the infimum is over all permutations π of {1,,N}. The striking point of this result is the factor (logN)2. Indeed, if instead of μ we consider the uniform distribution on the unit square, it is well known that the proper factor is logN. The upper bound was proved by Michel Ledoux (2017) [3].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.04.018

Michel Talagrand 1

1 23, rue Louis-Pouey, 92800 Puteaux, France
@article{CRMATH_2018__356_6_692_0,
     author = {Michel Talagrand},
     title = {Scaling and non-standard matching theorems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {692--695},
     publisher = {Elsevier},
     volume = {356},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crma.2018.04.018},
     language = {en},
}
TY  - JOUR
AU  - Michel Talagrand
TI  - Scaling and non-standard matching theorems
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 692
EP  - 695
VL  - 356
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2018.04.018
LA  - en
ID  - CRMATH_2018__356_6_692_0
ER  - 
%0 Journal Article
%A Michel Talagrand
%T Scaling and non-standard matching theorems
%J Comptes Rendus. Mathématique
%D 2018
%P 692-695
%V 356
%N 6
%I Elsevier
%R 10.1016/j.crma.2018.04.018
%G en
%F CRMATH_2018__356_6_692_0
Michel Talagrand. Scaling and non-standard matching theorems. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 692-695. doi : 10.1016/j.crma.2018.04.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.018/

[1] M. Ajtai; J. Komlós; G. Tusnády On optimal matchings, Combinatorica, Volume 4 (1984) no. 4, pp. 259-264

[2] L. Ambrosio; F. Stra; D. Trevisan A PDE approach to a 2-dimensional matching problem, Probab. Theory Relat. Fields (2016) (in press)

[3] M. Ledoux On optimal matching of Gaussian samples, Zap. Nauč. Semin. POMI, Volume 457 (2017) (Veroyatnost' i Statistika 25 226–264)

[4] M. Talagrand Upper and Lower Bounds for Stochastic Processes http://michel.talagrand.net/ULB.pdf (new edition in preparation, available at)

[5] J. Yukich Some generalizations of the Euclidean two-sample matching problem, Probability in Banach Spaces, 8, Progress in Probability, vol. 30, Birkhäuser, 1992, pp. 55-66

  • Eustasio del Barrio; Alberto González-Sanz; Jean-Michel Loubes Central limit theorems for general transportation costs, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 60 (2024) no. 2 | DOI:10.1214/22-aihp1356
  • Emanuele Caglioti; Francesca Pieroni Random Matching in 2D with Exponent 2 for Gaussian Densities, Journal of Statistical Physics, Volume 191 (2024) no. 5 | DOI:10.1007/s10955-024-03275-y
  • Michel Ledoux Optimal Matching of Random Samples and Rates of Convergence of Empirical Measures, Mathematics Going Forward, Volume 2313 (2023), p. 615 | DOI:10.1007/978-3-031-12244-6_43
  • Mario Ghossoub; Jesse Hall; David Saunders Maximum Spectral Measures of Risk with Given Risk Factor Marginal Distributions, Mathematics of Operations Research, Volume 48 (2023) no. 2, p. 1158 | DOI:10.1287/moor.2022.1299
  • Martin Huesmann; Francesco Mattesini; Dario Trevisan Wasserstein asymptotics for the empirical measure of fractional Brownian motion on a flat torus, Stochastic Processes and their Applications, Volume 155 (2023), p. 1 | DOI:10.1016/j.spa.2022.09.008
  • Luigi Ambrosio; Michael Goldman; Dario Trevisan On the quadratic random matching problem in two-dimensional domains, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp784
  • Łukasz Szpruch; Alvin Tse Antithetic multilevel sampling method for nonlinear functionals of measure, The Annals of Applied Probability, Volume 31 (2021) no. 3 | DOI:10.1214/20-aap1614
  • Michel Talagrand Matching Theorems, Upper and Lower Bounds for Stochastic Processes, Volume 60 (2021), p. 111 | DOI:10.1007/978-3-030-82595-9_4
  • Martin Kenyeres; Jozef Kenyeres, 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI) (2020), p. 157 | DOI:10.1109/sami48414.2020.9108754
  • Sergio Caracciolo; Matteo P D’Achille; Vittorio Erba; Andrea Sportiello The Dyck bound in the concave 1-dimensional random assignment model, Journal of Physics A: Mathematical and Theoretical, Volume 53 (2020) no. 6, p. 064001 | DOI:10.1088/1751-8121/ab4a34
  • Dario Benedetto; Emanuele Caglioti Euclidean Random Matching in 2D for Non-constant Densities, Journal of Statistical Physics, Volume 181 (2020) no. 3, p. 854 | DOI:10.1007/s10955-020-02608-x
  • Luigi Ambrosio; Federico Glaudo Finer estimates on the 2-dimensional matching problem, Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), p. 737 | DOI:10.5802/jep.105
  • Sergio Caracciolo; Matteo D’Achille; Gabriele Sicuro Anomalous Scaling of the Optimal Cost in the One-Dimensional Random Assignment Problem, Journal of Statistical Physics, Volume 174 (2019) no. 4, p. 846 | DOI:10.1007/s10955-018-2212-9

Cité par 13 documents. Sources : Crossref

Commentaires - Politique