Consider the standard Gaussian measure μ on . Consider independent r.v.s distributed according to μ, and an independent copy of these r.v.s. We prove that, for some number C and N large, we have
(1) |
Considérons une suite indépendente de variables aléatoires distribuées comme la mesure gaussienne canonique μ sur et une copie independente de cette même suite. Pour une certaine constante universelle C et , nous avons les inégalités
(1) |
Accepted:
Published online:
Michel Talagrand 1
@article{CRMATH_2018__356_6_692_0, author = {Michel Talagrand}, title = {Scaling and non-standard matching theorems}, journal = {Comptes Rendus. Math\'ematique}, pages = {692--695}, publisher = {Elsevier}, volume = {356}, number = {6}, year = {2018}, doi = {10.1016/j.crma.2018.04.018}, language = {en}, }
Michel Talagrand. Scaling and non-standard matching theorems. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 692-695. doi : 10.1016/j.crma.2018.04.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.018/
[1] On optimal matchings, Combinatorica, Volume 4 (1984) no. 4, pp. 259-264
[2] A PDE approach to a 2-dimensional matching problem, Probab. Theory Relat. Fields (2016) (in press)
[3] On optimal matching of Gaussian samples, Zap. Nauč. Semin. POMI, Volume 457 (2017) (Veroyatnost' i Statistika 25 226–264)
[4] Upper and Lower Bounds for Stochastic Processes http://michel.talagrand.net/ULB.pdf (new edition in preparation, available at)
[5] Some generalizations of the Euclidean two-sample matching problem, Probability in Banach Spaces, 8, Progress in Probability, vol. 30, Birkhäuser, 1992, pp. 55-66
Cited by Sources:
Comments - Politique