We consider a negative Laplacian in multi-dimensional Euclidean space (or a multi-dimensional layer) with a weak disorder random perturbation. The perturbation consists of a sum of lattice translates of a delta interaction supported on a compact manifold of co-dimension one and modulated by coupling constants, which are independent identically distributed random variables times a small disorder parameter. We establish that the spectrum of the considered operator is almost surely a fixed set, characterize its minimum, give an initial length scale estimate and the Wegner estimate, and conclude that there is a small zone of a pure point spectrum containing the almost sure spectral bottom. The length of this zone is proportional to the small disorder parameter.
Nous considérons le laplacien dans un espace euclidien multi-dimensionel (ou dans une couche multi-dimensionelle), avec une perturbation aléatoire à faible désordre. La perturbation consiste en une somme de translations par des points d'un réseau d'une interaction delta, supportée sur une variété de codimension un, qui sont modulées par des variables aléatoires indépendantes et identiquement distribuées, multipliées par un paramètre petit global. Nous démontrons que le spectre de cet opérateur est presque sûrement un ensemble déterministe, nous identifions son minimum spectral, nous donnons une estimation de la longueur de pas initial et une estimée de Wegner, et nous en déduisons qu'il y a une petite zone, contenant le minimum du spectre, dans laquelle ce dernier est purement ponctuel. Le diamètre de cette zone est proportionnel au paramètre contrôlant le désordre faible.
Accepted:
Published online:
Denis I. Borisov 1, 2, 3; Matthias Täufer 4; Ivan Veselić 4
@article{CRMATH_2018__356_6_686_0, author = {Denis I. Borisov and Matthias T\"aufer and Ivan Veseli\'c}, title = {Spectral localization for quantum {Hamiltonians} with weak random delta interaction}, journal = {Comptes Rendus. Math\'ematique}, pages = {686--691}, publisher = {Elsevier}, volume = {356}, number = {6}, year = {2018}, doi = {10.1016/j.crma.2018.04.023}, language = {en}, }
TY - JOUR AU - Denis I. Borisov AU - Matthias Täufer AU - Ivan Veselić TI - Spectral localization for quantum Hamiltonians with weak random delta interaction JO - Comptes Rendus. Mathématique PY - 2018 SP - 686 EP - 691 VL - 356 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2018.04.023 LA - en ID - CRMATH_2018__356_6_686_0 ER -
Denis I. Borisov; Matthias Täufer; Ivan Veselić. Spectral localization for quantum Hamiltonians with weak random delta interaction. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 686-691. doi : 10.1016/j.crma.2018.04.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.023/
[1] Asymptotic behaviour of the spectrum of a waveguide with distant perturbations, Math. Phys. Anal. Geom., Volume 10 (2007) no. 2, pp. 155-196
[2] Initial length scale estimate for layers with small random negative definite perturbations, J. Math. Sci. (2018) http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=into&paperid=240&option_lang=rus (in press. This paper is a translation of an original Russian paper, see)
[3] Low lying eigenvalues of randomly curved quantum waveguides, J. Funct. Anal., Volume 265 (2013) no. 11, pp. 2877-2909
[4] Quantum Hamiltonians with weak random abstract perturbation. I. Initial length scale estimate, Ann. Henri Poincaré, Volume 17 (2016) no. 9, pp. 2341-2377
[5] Expansion of the spectrum in the weak-disorder regime for random operators in continuum space, Commun. Contemp. Math., Volume 20 (2018) no. 1 (24 p.)
[6] D. Borisov, M. Täufer, I. Veselić, Quantum Hamiltonians with weak random abstract perturbation. II. Localization, Working paper.
[7] The integrated density of states for some random operators with nonsign definite potentials, J. Funct. Anal., Volume 195 (2002) no. 1, pp. 12-47
[8] Spectral and dynamical properties of random models with nonlocal and singular interactions, Math. Nachr., Volume 278 (2005) no. 6, pp. 627-664
[9] Localization on quantum graphs with random vertex couplings, J. Stat. Phys., Volume 131 (2008) no. 4, pp. 651-673
[10] Localization for the random displacement model, Duke Math. J., Volume 161 (2012) no. 4, pp. 587-621
[11] Wegner estimate and the density of states of some indefinite alloy type Schrödinger operators, Lett. Math. Phys., Volume 59 (2002) no. 3, pp. 199-214
Cited by Sources:
Comments - Policy