In this article, we construct a commutative unital Banach algebra, in which the property is true for the invertible elements, but cannot be extended to the whole algebra.
Dans cette Note, nous construisons une algèbre de Banach unitaire, commutative, dans laquelle l'identité est vraie pour les éléments inversibles, mais ne peut être étendue à toute l'algèbre.
Accepted:
Published online:
Geethika Sebastian 1; Sukumar Daniel 1
@article{CRMATH_2018__356_6_594_0, author = {Geethika Sebastian and Sukumar Daniel}, title = {A characterizing property of commutative {Banach} algebras may not be sufficient only on the invertible elements}, journal = {Comptes Rendus. Math\'ematique}, pages = {594--596}, publisher = {Elsevier}, volume = {356}, number = {6}, year = {2018}, doi = {10.1016/j.crma.2018.05.002}, language = {en}, }
TY - JOUR AU - Geethika Sebastian AU - Sukumar Daniel TI - A characterizing property of commutative Banach algebras may not be sufficient only on the invertible elements JO - Comptes Rendus. Mathématique PY - 2018 SP - 594 EP - 596 VL - 356 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2018.05.002 LA - en ID - CRMATH_2018__356_6_594_0 ER -
%0 Journal Article %A Geethika Sebastian %A Sukumar Daniel %T A characterizing property of commutative Banach algebras may not be sufficient only on the invertible elements %J Comptes Rendus. Mathématique %D 2018 %P 594-596 %V 356 %N 6 %I Elsevier %R 10.1016/j.crma.2018.05.002 %G en %F CRMATH_2018__356_6_594_0
Geethika Sebastian; Sukumar Daniel. A characterizing property of commutative Banach algebras may not be sufficient only on the invertible elements. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 594-596. doi : 10.1016/j.crma.2018.05.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.05.002/
[1] On the denseness of the invertible group in Banach algebras, Proc. Amer. Math. Soc., Volume 131 (2003) no. 9, pp. 2831-2839
[2] Dimension and stable rank in K-theory of C*-algebras, Proc. Lond. Math. Soc., Volume 3 (1983) no. 3, pp. 577-600
[3] On the density of the invertible group in C*-algebra, Proc. Edinb. Math. Soc. (2), Volume 20 (1976), pp. 153-157
[4] On the open ball centered at an invertible element of a Banach algebra, Oper. Matrices, Volume 12 (2018) no. 1, pp. 19-25
Cited by Sources:
Comments - Policy