[Inégalité de type Brézis–Gallouet–Wainger pour un espace de Sobolev fractionnaire critique et BMO]
In this paper, we prove the Brézis–Gallouet–Wainger-type inequality involving the BMO norm, the fractional Sobolev norm, and the logarithmic norm of
Dans cette Note, nous montrons l'inégalité de type Brézis–Gallouet–Wainger faisant intervenir la norme BMO, la norme fractionnaire de Sobolev et la norme logarithmique de
Accepté le :
Publié le :
Nguyen-Anh Dao 1 ; Quoc-Hung Nguyen 2
@article{CRMATH_2018__356_7_747_0, author = {Nguyen-Anh Dao and Quoc-Hung Nguyen}, title = {Br\'ezis{\textendash}Gallouet{\textendash}Wainger-type inequality with critical fractional {Sobolev} space and {BMO}}, journal = {Comptes Rendus. Math\'ematique}, pages = {747--756}, publisher = {Elsevier}, volume = {356}, number = {7}, year = {2018}, doi = {10.1016/j.crma.2018.05.009}, language = {en}, }
TY - JOUR AU - Nguyen-Anh Dao AU - Quoc-Hung Nguyen TI - Brézis–Gallouet–Wainger-type inequality with critical fractional Sobolev space and BMO JO - Comptes Rendus. Mathématique PY - 2018 SP - 747 EP - 756 VL - 356 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2018.05.009 LA - en ID - CRMATH_2018__356_7_747_0 ER -
Nguyen-Anh Dao; Quoc-Hung Nguyen. Brézis–Gallouet–Wainger-type inequality with critical fractional Sobolev space and BMO. Comptes Rendus. Mathématique, Volume 356 (2018) no. 7, pp. 747-756. doi : 10.1016/j.crma.2018.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.05.009/
[1] Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., Volume 94 (1984), pp. 61-66
[2] Nonlinear Schrodinger evolution equations, Nonlinear Anal., Volume 4 (1980), pp. 677-681
[3] A note on limiting cases of Sobolev embeddings and convolution inequalities, Commun. Partial Differ. Equ., Volume 5 (1980), pp. 773-789
[4] An alternative proof of the Brézis–Wainger inequality, Commun. Partial Differ. Equ., Volume 14 (1989), pp. 541-544
[5] Limiting case of the Sobolev inequality in BMO with application to the Euler equations, Commun. Math. Phys., Volume 214 (2000), pp. 191-200
[6] Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO, Math. Z., Volume 295 (2008), pp. 935-950
[7] The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., Volume 242 (2002), pp. 251-278
[8] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Soc. Math. Fr., Volume 136 (2012), pp. 521-573
[9] On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain, J. Differ. Equ., Volume 190 (2003), pp. 39-63
[10] On critical cases of Sobolev's inequalities, J. Funct. Anal., Volume 127 (1995), pp. 259-269
- Gagliardo-Nirenberg type inequalities on Lorentz, Marcinkiewicz and weak-
spaces, Proceedings of the American Mathematical Society, Volume 150 (2022) no. 7, pp. 2889-2900 | DOI:10.1090/proc/15691 | Zbl:1497.46035 - Fractional Sobolev inequalities revisited: the maximal function approach, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 31 (2020) no. 1, pp. 225-236 | DOI:10.4171/rlm/887 | Zbl:1453.46032
Cité par 2 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier