In this paper, we prove the Brézis–Gallouet–Wainger-type inequality involving the BMO norm, the fractional Sobolev norm, and the logarithmic norm of , for .
Dans cette Note, nous montrons l'inégalité de type Brézis–Gallouet–Wainger faisant intervenir la norme BMO, la norme fractionnaire de Sobolev et la norme logarithmique de , pour .
Accepted:
Published online:
Nguyen-Anh Dao 1; Quoc-Hung Nguyen 2
@article{CRMATH_2018__356_7_747_0, author = {Nguyen-Anh Dao and Quoc-Hung Nguyen}, title = {Br\'ezis{\textendash}Gallouet{\textendash}Wainger-type inequality with critical fractional {Sobolev} space and {BMO}}, journal = {Comptes Rendus. Math\'ematique}, pages = {747--756}, publisher = {Elsevier}, volume = {356}, number = {7}, year = {2018}, doi = {10.1016/j.crma.2018.05.009}, language = {en}, }
TY - JOUR AU - Nguyen-Anh Dao AU - Quoc-Hung Nguyen TI - Brézis–Gallouet–Wainger-type inequality with critical fractional Sobolev space and BMO JO - Comptes Rendus. Mathématique PY - 2018 SP - 747 EP - 756 VL - 356 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2018.05.009 LA - en ID - CRMATH_2018__356_7_747_0 ER -
Nguyen-Anh Dao; Quoc-Hung Nguyen. Brézis–Gallouet–Wainger-type inequality with critical fractional Sobolev space and BMO. Comptes Rendus. Mathématique, Volume 356 (2018) no. 7, pp. 747-756. doi : 10.1016/j.crma.2018.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.05.009/
[1] Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., Volume 94 (1984), pp. 61-66
[2] Nonlinear Schrodinger evolution equations, Nonlinear Anal., Volume 4 (1980), pp. 677-681
[3] A note on limiting cases of Sobolev embeddings and convolution inequalities, Commun. Partial Differ. Equ., Volume 5 (1980), pp. 773-789
[4] An alternative proof of the Brézis–Wainger inequality, Commun. Partial Differ. Equ., Volume 14 (1989), pp. 541-544
[5] Limiting case of the Sobolev inequality in BMO with application to the Euler equations, Commun. Math. Phys., Volume 214 (2000), pp. 191-200
[6] Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO, Math. Z., Volume 295 (2008), pp. 935-950
[7] The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., Volume 242 (2002), pp. 251-278
[8] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Soc. Math. Fr., Volume 136 (2012), pp. 521-573
[9] On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain, J. Differ. Equ., Volume 190 (2003), pp. 39-63
[10] On critical cases of Sobolev's inequalities, J. Funct. Anal., Volume 127 (1995), pp. 259-269
Cited by Sources:
Comments - Policy