In this note, we prove that the centralizer lattice of a group G cannot be written as a union of two proper intervals. In particular, it follows that has no breaking point. As an application, we show that the generalized quaternion 2-groups are not capable.
Dans cette note, nous montrons que le treillis des centralisateurs d'un groupe G ne peut pas être écrit comme une union de deux intervalles appropriés. En particulier, il s'ensuit que n'a pas de point de rupture. Comme application, nous montrons que les 2-groupes de quaternions généralisés ne sont pas capables.
Accepted:
Published online:
Marius Tărnăuceanu 1
@article{CRMATH_2018__356_8_843_0, author = {Marius T\u{a}rn\u{a}uceanu}, title = {Breaking points in centralizer lattices}, journal = {Comptes Rendus. Math\'ematique}, pages = {843--845}, publisher = {Elsevier}, volume = {356}, number = {8}, year = {2018}, doi = {10.1016/j.crma.2018.06.006}, language = {en}, }
Marius Tărnăuceanu. Breaking points in centralizer lattices. Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 843-845. doi : 10.1016/j.crma.2018.06.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.06.006/
[1] Abelian groups whose subgroup lattice is the union of two intervals, J. Aust. Math. Soc., Volume 78 (2005) no. 1, pp. 27-36
[2] Breaking points in subgroup lattices, Proceedings of Groups St. Andrews 2001 in Oxford, vol. 1, Cambridge University Press, Cambridge, UK, 2003, pp. 59-62
[3] A note on a characterization of generalized quaternion 2-groups, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 6, pp. 459-461
[4] Finite Group Theory, American Mathematical Society, Providence, RI, USA, 2008
[5] Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics, vol. 14, de Gruyter, Berlin, 1994
[6] On normal subgroups of capable groups, Arch. Math., Volume 48 (1987) no. 3, pp. 193-198
[7] A characterization of generalized quaternion 2-groups, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 13–14, pp. 731-733
Cited by Sources:
Comments - Policy