[Nombres de Milnor et Tjurina pour les germes d'hypersurfaces à singularité isolée]
Assume that
Soit
Accepté le :
Publié le :
Yongqiang Liu 1
@article{CRMATH_2018__356_9_963_0, author = {Yongqiang Liu}, title = {Milnor and {Tjurina} numbers for a hypersurface germ with isolated singularity}, journal = {Comptes Rendus. Math\'ematique}, pages = {963--966}, publisher = {Elsevier}, volume = {356}, number = {9}, year = {2018}, doi = {10.1016/j.crma.2018.07.004}, language = {en}, }
Yongqiang Liu. Milnor and Tjurina numbers for a hypersurface germ with isolated singularity. Comptes Rendus. Mathématique, Volume 356 (2018) no. 9, pp. 963-966. doi : 10.1016/j.crma.2018.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.07.004/
[1] Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de
[2] Differential forms and hypersurface singularities, Singularity theory and its applications, Part I, Coventry, 1988/1989 (Lecture Notes in Mathematics), Volume vol. 1462, Springer, Berlin (1991), pp. 122-153
[3] On 1-forms on isolated complete intersection curve singularities | arXiv
[4] Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007
[5] Milnor numbers of projective hypersurfaces with isolated singularities, Duke Math. J., Volume 163 (2014), pp. 1525-1548
[6] Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976) no. 1, pp. 1-31
[7] Letter to the editors, Invent. Math., Volume 20 (1973), pp. 171-172
[8] Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., Volume 14 (1971), pp. 123-142 (in German)
[9] On the monodromy theorem for isolated hypersurface singularities, Invent. Math., Volume 58 (1980) no. 3, pp. 289-301
[10] (Singularités à Cargèse. Asterisque), Volume vol. 7 et 8, Société mathématique de France, Paris (1973), pp. 285-362
[11] Sur une inégalité à la Minkowski pour les multiplicités, Ann. of Math. (2), Volume 106 (1977) no. 1, pp. 38-44
[12] A characterization of quasihomogeneous Gorenstein surface singularities, Compos. Math., Volume 55 (1985) no. 3, pp. 269-288
[13] Complete characterization of isolated homogeneous hypersurface singularities, Pac. J. Math., Volume 273 (2015) no. 1, pp. 213-224
- Computing mixed multiplicities, mixed volumes and sectional Milnor numbers, Geometry, groups and mathematical philosophy. International conference in honor of Ravi S. Kulkarni's 80th birthday, Bhaskaracharya Pratishthana, Pune, India, May 21–25, 2022, Providence, RI: American Mathematical Society (AMS), 2025, pp. 93-112 | DOI:10.1090/conm/811/16240 | Zbl:8019769
- Bruce-Roberts numbers and quasihomogeneous functions on analytic varieties, Research in the Mathematical Sciences, Volume 11 (2024) no. 3, p. 23 (Id/No 46) | DOI:10.1007/s40687-024-00458-7 | Zbl:1542.32004
- On Briançon-Skoda theorem for foliations, Expositiones Mathematicae, Volume 41 (2023) no. 4, p. 13 (Id/No 125512) | DOI:10.1016/j.exmath.2023.07.001 | Zbl:1537.32112
- Invariants of surfaces of degree
in , Journal of the Ramanujan Mathematical Society, Volume 38 (2023) no. 2, pp. 129-138 | Zbl:1528.14070 - The Tjurina number for Sebastiani-Thom type isolated hypersurface singularities, Mediterranean Journal of Mathematics, Volume 20 (2023) no. 5, p. 14 (Id/No 258) | DOI:10.1007/s00009-023-02458-3 | Zbl:1523.14057
- On the quotient of Milnor and Tjurina numbers for two-dimensional isolated hypersurface singularities, Mathematische Nachrichten, Volume 295 (2022) no. 7, pp. 1254-1263 | DOI:10.1002/mana.202100371 | Zbl:1522.32064
- Number of generators of derivation modules of some hypersurfaces, Proceedings of the Indian Academy of Sciences. Mathematical Sciences, Volume 132 (2022) no. 1, p. 14 (Id/No 39) | DOI:10.1007/s12044-022-00689-0 | Zbl:1487.13051
- Mixed Bruce-Roberts numbers, Proceedings of the Edinburgh Mathematical Society. Series II, Volume 63 (2020) no. 2, pp. 456-474 | DOI:10.1017/s0013091519000543 | Zbl:1439.32071
Cité par 8 documents. Sources : zbMATH
Commentaires - Politique