[Nombres de Milnor et Tjurina pour les germes d'hypersurfaces à singularité isolée]
Soit un germe de fonction analytique au voisinage de l'origine avec une seule singularité isolée. Soient μ et τ les nombres de Milnor et Tjurina correspondants. Nous montrons que . Comme application, nous donnons une minoration du nombre de Tjurina en fonction de n et de la multiplicité de f à l'origine.
Assume that is an analytic function germ at the origin with only isolated singularity. Let μ and τ be the corresponding Milnor and Tjurina numbers. We show that . As an application, we give a lower bound for the Tjurina number in terms of n and the multiplicity of f at the origin.
Accepté le :
Publié le :
Yongqiang Liu 1
@article{CRMATH_2018__356_9_963_0, author = {Yongqiang Liu}, title = {Milnor and {Tjurina} numbers for a hypersurface germ with isolated singularity}, journal = {Comptes Rendus. Math\'ematique}, pages = {963--966}, publisher = {Elsevier}, volume = {356}, number = {9}, year = {2018}, doi = {10.1016/j.crma.2018.07.004}, language = {en}, }
Yongqiang Liu. Milnor and Tjurina numbers for a hypersurface germ with isolated singularity. Comptes Rendus. Mathématique, Volume 356 (2018) no. 9, pp. 963-966. doi : 10.1016/j.crma.2018.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.07.004/
[1] Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de , C. R. Acad. Sci. Paris, Ser. A, Volume 278 (1974), pp. 949-951 (in French)
[2] Differential forms and hypersurface singularities, Singularity theory and its applications, Part I, Coventry, 1988/1989 (Lecture Notes in Mathematics), Volume vol. 1462, Springer, Berlin (1991), pp. 122-153
[3] On 1-forms on isolated complete intersection curve singularities | arXiv
[4] Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007
[5] Milnor numbers of projective hypersurfaces with isolated singularities, Duke Math. J., Volume 163 (2014), pp. 1525-1548
[6] Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976) no. 1, pp. 1-31
[7] Letter to the editors, Invent. Math., Volume 20 (1973), pp. 171-172
[8] Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., Volume 14 (1971), pp. 123-142 (in German)
[9] On the monodromy theorem for isolated hypersurface singularities, Invent. Math., Volume 58 (1980) no. 3, pp. 289-301
[10] (Singularités à Cargèse. Asterisque), Volume vol. 7 et 8, Société mathématique de France, Paris (1973), pp. 285-362
[11] Sur une inégalité à la Minkowski pour les multiplicités, Ann. of Math. (2), Volume 106 (1977) no. 1, pp. 38-44
[12] A characterization of quasihomogeneous Gorenstein surface singularities, Compos. Math., Volume 55 (1985) no. 3, pp. 269-288
[13] Complete characterization of isolated homogeneous hypersurface singularities, Pac. J. Math., Volume 273 (2015) no. 1, pp. 213-224
Cité par Sources :
Commentaires - Politique