[Sur l'espace de multiplicité de branchement de SO(n + 3) vers SO(n)]
Nous étudions la décomposition de l'espace de multiplicité, comme -module, correspondant au branchement de vers . Ici, (resp. ) est considéré comme plongé dans dans le bloc en haut à gauche (resp. le bloc en bas à droite). Nous montrons que, lorsque le plus grand poids de la représentation irréductible de s'entrelace avec le plus grand poids de la représentation irréductible de , alors l'espace de multiplicité se décompose en un produit tensoriel de représentations réductibles de .
We study the decomposition as an -module of the multiplicity space corresponding to the branching from to . Here, (resp. ) is considered embedded in in the upper left-hand block (resp. lower right-hand block). We show that when the highest weight of the irreducible representation of interlaces the highest weight of the irreducible representation of , then the multiplicity space decomposes as a tensor product of reducible representations of .
Accepté le :
Publié le :
Emilio A. Lauret 1 ; Fiorela Rossi Bertone 1
@article{CRMATH_2018__356_11-12_1112_0, author = {Emilio A. Lauret and Fiorela Rossi Bertone}, title = {On the {SO(\protect\emph{n} + 3)} to {SO(\protect\emph{n})} branching multiplicity space}, journal = {Comptes Rendus. Math\'ematique}, pages = {1112--1124}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.09.004}, language = {en}, }
Emilio A. Lauret; Fiorela Rossi Bertone. On the SO(n + 3) to SO(n) branching multiplicity space. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1112-1124. doi : 10.1016/j.crma.2018.09.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.09.004/
[1] Spectra of the Laplace operator on Grassmann manifolds, Int. J. Pure Appl. Math., Volume 12 (2004) no. 4, pp. 395-418
[2] A branching law from Sp(n) to Sp(q) × Sp(n-q) and an application to Laplace operator spectra, Indian J. Pure Appl. Math., Volume 43 (2012) no. 1, pp. 71-86 | DOI
[3] Canonical solution of the reduction problem from the pattern calculus, Acta Appl. Math., Volume 24 (1991) no. 1, pp. 59-108
[4] Finite-dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk SSSR (N.S.), Volume 71 (1950), pp. 825-828
[5] Symmetry, Representations, and Invariants, Grad. Texts in Math., vol. 255, Springer-Verlag, New York, 2009 | DOI
[6] Finite-dimensional induction and new results on invariants for classical groups, I, Amer. J. Math., Volume 106 (1984) no. 4, pp. 893-974 | DOI
[7] Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc., Volume 357 (2005) no. 4, pp. 1601-1626 | DOI
[8] Tiling branching multiplicity spaces with pattern blocks, J. Aust. Math. Soc., Volume 94 (2013) no. 3, pp. 362-374 | DOI
[9] A basis for the symplectic group branching algebra, J. Algebraic Comb., Volume 35 (2012) no. 2, pp. 269-290 | DOI
[10] Branching theorems for compact symmetric spaces, Represent. Theory, Volume 5 (2001), pp. 404-463 | DOI
[11] Lie Groups Beyond an Introduction, Progr. Math., vol. 140, Birkhäuser Boston Inc., 2002
[12] Multiplicity formulas for certain semisimple Lie groups, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 601-605 | DOI
[13] Gelfand–Tsetlin bases for classical Lie algebras, Handbook of Algebra, Handb. Algebr., vol. 4, Elsevier/North-Holland, Amsterdam, 2006, pp. 109-170 | DOI
[14] Spectra of Laplace–Beltrami operators on and , Osaka J. Math., Volume 18 (1981) no. 2, pp. 407-426
[15] Branching rules for , Bull. Fac. Tex. Sci., Kyoto Inst. Technol., Volume 30 (2005), pp. 11-20 http://hdl.handle.net/10212/1686
[16] A multiplicity formula for tensor products of modules and an explicit to branching formula, Symmetry in Mathematics and Physics, Contemp. Math., vol. 490, Amer. Math. Soc., Providence, RI, USA, 2009, pp. 151-155 | DOI
[17] An analysis of the multiplicity spaces in branching of symplectic groups, Sel. Math. (N.S.), Volume 16 (2010) no. 4, pp. 819-855 | DOI
Cité par Sources :
☆ This research was partially supported by grants from CONICET and Agencia Nacional de Promoción Científica y Tecnológica (PICT-2015-0274 and PICT-2014-2706). The first named author was supported by the Alexander von Humboldt Foundation.
Commentaires - Politique