[Sur l'espace de multiplicité de branchement de SO(n + 3) vers SO(n)]
Nous étudions la décomposition de l'espace de multiplicité, comme
We study the decomposition as an
Accepté le :
Publié le :
Emilio A. Lauret 1 ; Fiorela Rossi Bertone 1
@article{CRMATH_2018__356_11-12_1112_0, author = {Emilio A. Lauret and Fiorela Rossi Bertone}, title = {On the {SO(\protect\emph{n} + 3)} to {SO(\protect\emph{n})} branching multiplicity space}, journal = {Comptes Rendus. Math\'ematique}, pages = {1112--1124}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.09.004}, language = {en}, }
Emilio A. Lauret; Fiorela Rossi Bertone. On the SO(n + 3) to SO(n) branching multiplicity space. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1112-1124. doi : 10.1016/j.crma.2018.09.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.09.004/
[1] Spectra of the Laplace operator on Grassmann manifolds, Int. J. Pure Appl. Math., Volume 12 (2004) no. 4, pp. 395-418
[2] A branching law from Sp(n) to Sp(q) × Sp(n-q) and an application to Laplace operator spectra, Indian J. Pure Appl. Math., Volume 43 (2012) no. 1, pp. 71-86 | DOI
[3] Canonical solution of the
[4] Finite-dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk SSSR (N.S.), Volume 71 (1950), pp. 825-828
[5] Symmetry, Representations, and Invariants, Grad. Texts in Math., vol. 255, Springer-Verlag, New York, 2009 | DOI
[6] Finite-dimensional induction and new results on invariants for classical groups, I, Amer. J. Math., Volume 106 (1984) no. 4, pp. 893-974 | DOI
[7] Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc., Volume 357 (2005) no. 4, pp. 1601-1626 | DOI
[8] Tiling branching multiplicity spaces with
[9] A basis for the symplectic group branching algebra, J. Algebraic Comb., Volume 35 (2012) no. 2, pp. 269-290 | DOI
[10] Branching theorems for compact symmetric spaces, Represent. Theory, Volume 5 (2001), pp. 404-463 | DOI
[11] Lie Groups Beyond an Introduction, Progr. Math., vol. 140, Birkhäuser Boston Inc., 2002
[12] Multiplicity formulas for certain semisimple Lie groups, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 601-605 | DOI
[13] Gelfand–Tsetlin bases for classical Lie algebras, Handbook of Algebra, Handb. Algebr., vol. 4, Elsevier/North-Holland, Amsterdam, 2006, pp. 109-170 | DOI
[14] Spectra of Laplace–Beltrami operators on
[15] Branching rules for
[16] A multiplicity formula for tensor products of
[17] An analysis of the multiplicity spaces in branching of symplectic groups, Sel. Math. (N.S.), Volume 16 (2010) no. 4, pp. 819-855 | DOI
Cité par Sources :
☆ This research was partially supported by grants from CONICET and Agencia Nacional de Promoción Científica y Tecnológica (PICT-2015-0274 and PICT-2014-2706). The first named author was supported by the Alexander von Humboldt Foundation.
Commentaires - Politique