[La cohomologie de Hochschild singulière via la catégorie des singularités]
Nous montrons que la cohomologie de Hochschild singulière (cohomologie de Tate–Hochschild) d'une algèbre A est isomorphe, en tant qu'algèbre graduée, à la cohomologie de Hochschild de l'enrichissement différentiel gradué de la catégorie des singularités de A. L'existence d'un tel isomorphisme est suggérée par des travaux récents de Zhengfang Wang.
We show that the singular Hochschild cohomology (= Tate–Hochschild cohomology) of an algebra A is isomorphic, as a graded algebra, to the Hochschild cohomology of the differential graded enhancement of the singularity category of A. The existence of such an isomorphism is suggested by recent work by Zhengfang Wang.
Accepté le :
Publié le :
Bernhard Keller 1
@article{CRMATH_2018__356_11-12_1106_0, author = {Bernhard Keller}, title = {Singular {Hochschild} cohomology via the singularity category}, journal = {Comptes Rendus. Math\'ematique}, pages = {1106--1111}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.10.003}, language = {en}, }
Bernhard Keller. Singular Hochschild cohomology via the singularity category. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1106-1111. doi : 10.1016/j.crma.2018.10.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.10.003/
[1] The double bar and cobar constructions, Compos. Math., Volume 43 (1981) no. 3, pp. 331-341
[2] Tate–Hochschild homology and cohomology of Frobenius algebras, J. Noncommut. Geom., Volume 7 (2013) no. 4, pp. 907-937
[3] Motivic realizations of singularity categories and vanishing cycles | arXiv
[4] Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings, 1986 http://hdl.handle.net/1807/16682 (155 pp.)
[5] X.-W. Chen, H. Li, Z. Wang, The Hochschild cohomology of Leavitt path algebras and Tate–Hochschild cohomology, in preparation.
[6] DG quotients of DG categories, J. Algebra, Volume 272 (2004) no. 2, pp. 643-691
[7] Compact generators in categories of matrix factorizations, Duke Math. J., Volume 159 (2011) no. 2, pp. 223-274
[8] Homological mirror symmetry for curves of higher genus, Adv. Math., Volume 230 (2012) no. 2, pp. 493-530
[9] Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc., Volume 260 (1980) no. 1, pp. 35-64
[10] Calabi–Yau Frobenius algebras, J. Algebra, Volume 321 (2009) no. 3, pp. 774-815
[11] The cohomology structure of an associative ring, Ann. of Math. (2), Volume 78 (1963), pp. 267-288
[12] Operads, homotopy algebra, and iterated integrals for double loop spaces | arXiv
[13] Mather–Yau theorem in positive characteristic, J. Algebraic Geom., Volume 26 (2017) no. 2, pp. 347-355
[14] Hochschild and cyclic homology of hypersurfaces, Adv. Math., Volume 95 (1992) no. 1, pp. 18-60
[15] Cluster categories and rational curves | arXiv
[16] The structure of the -algebra, and the Hochschild and Harrison cohomologies, Tr. Tbil. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, Volume 91 (1988), pp. 19-27
[17] B. Keller, Derived invariance of higher structures on the Hochschild complex, preprint, 2003, available at the author's home page.
[18] Deriving DG categories, Ann. Sci. Éc. Norm. Supér. (4), Volume 27 (1994) no. 1, pp. 63-102
[19] On the cyclic homology of exact categories, J. Pure Appl. Algebra, Volume 136 (1999) no. 1, pp. 1-56
[20] On differential graded categories, International Congress of Mathematicians, vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151-190
[21] Hochschild cohomology of Abelian categories and ringed spaces, Adv. Math., Volume 198 (2005) no. 1, pp. 172-221
[22] Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math., Volume 69 (1982) no. 2, pp. 243-251
[23] Tate and Tate–Hochschild cohomology for finite dimensional Hopf algebras, J. Pure Appl. Algebra, Volume 217 (2013) no. 10, pp. 1967-1979
[24] Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math., Volume 246 (2004) no. 3, pp. 227-248
[25] Lectures on dg-categories, Topics in Algebraic and Topological K-Theory, Lecture Notes in Mathematics, vol. 2008, Springer, Berlin, 2011, pp. 243-302
[26] Tensor products of some special rings, J. Algebra, Volume 268 (2003) no. 2, pp. 672-676
[27] Gerstenhaber algebra and Deligne's conjecture on Tate–Hochschild cohomology | arXiv
[28] Singular deformation theory and the invariance of the Gerstenhaber algebra structure on the singular Hochschild cohomology | arXiv
[29] Singular Hochschild cohomology and Gerstenhaber algebra structure | arXiv
[30] Singular Hochschild cohomology of radical square zero algebras | arXiv
[31] Singular Hochschild cohomology and algebraic string operations | arXiv
Cité par Sources :
Commentaires - Politique