Comptes Rendus
Homological algebra/Algebraic geometry
Singular Hochschild cohomology via the singularity category
[La cohomologie de Hochschild singulière via la catégorie des singularités]
Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1106-1111.

Nous montrons que la cohomologie de Hochschild singulière (cohomologie de Tate–Hochschild) d'une algèbre A est isomorphe, en tant qu'algèbre graduée, à la cohomologie de Hochschild de l'enrichissement différentiel gradué de la catégorie des singularités de A. L'existence d'un tel isomorphisme est suggérée par des travaux récents de Zhengfang Wang.

We show that the singular Hochschild cohomology (= Tate–Hochschild cohomology) of an algebra A is isomorphic, as a graded algebra, to the Hochschild cohomology of the differential graded enhancement of the singularity category of A. The existence of such an isomorphism is suggested by recent work by Zhengfang Wang.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.10.003

Bernhard Keller 1

1 Université Paris-Diderot – Paris-7, Sorbonne Université, UFR de Mathématiques, CNRS, Institut de mathématiques de Jussieu–Paris Rive gauche, IMJ–PRG, bâtiment Sophie-Germain, 75205 Paris cedex 13, France
@article{CRMATH_2018__356_11-12_1106_0,
     author = {Bernhard Keller},
     title = {Singular {Hochschild} cohomology via the singularity category},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1106--1111},
     publisher = {Elsevier},
     volume = {356},
     number = {11-12},
     year = {2018},
     doi = {10.1016/j.crma.2018.10.003},
     language = {en},
}
TY  - JOUR
AU  - Bernhard Keller
TI  - Singular Hochschild cohomology via the singularity category
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 1106
EP  - 1111
VL  - 356
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2018.10.003
LA  - en
ID  - CRMATH_2018__356_11-12_1106_0
ER  - 
%0 Journal Article
%A Bernhard Keller
%T Singular Hochschild cohomology via the singularity category
%J Comptes Rendus. Mathématique
%D 2018
%P 1106-1111
%V 356
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2018.10.003
%G en
%F CRMATH_2018__356_11-12_1106_0
Bernhard Keller. Singular Hochschild cohomology via the singularity category. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1106-1111. doi : 10.1016/j.crma.2018.10.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.10.003/

[1] H.J. Baues The double bar and cobar constructions, Compos. Math., Volume 43 (1981) no. 3, pp. 331-341

[2] P.A. Bergh; D.A. Jorgensen Tate–Hochschild homology and cohomology of Frobenius algebras, J. Noncommut. Geom., Volume 7 (2013) no. 4, pp. 907-937

[3] A. Blanc; M. Robalo; B. Toën; G. Vezzosi Motivic realizations of singularity categories and vanishing cycles | arXiv

[4] R.-O. Buchweitz Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings, 1986 http://hdl.handle.net/1807/16682 (155 pp.)

[5] X.-W. Chen, H. Li, Z. Wang, The Hochschild cohomology of Leavitt path algebras and Tate–Hochschild cohomology, in preparation.

[6] V. Drinfeld DG quotients of DG categories, J. Algebra, Volume 272 (2004) no. 2, pp. 643-691

[7] T. Dyckerhoff Compact generators in categories of matrix factorizations, Duke Math. J., Volume 159 (2011) no. 2, pp. 223-274

[8] A.I. Efimov Homological mirror symmetry for curves of higher genus, Adv. Math., Volume 230 (2012) no. 2, pp. 493-530

[9] D. Eisenbud Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc., Volume 260 (1980) no. 1, pp. 35-64

[10] C.-H. Eu; T. Schedler Calabi–Yau Frobenius algebras, J. Algebra, Volume 321 (2009) no. 3, pp. 774-815

[11] M. Gerstenhaber The cohomology structure of an associative ring, Ann. of Math. (2), Volume 78 (1963), pp. 267-288

[12] E. Getzler; J.D.S. Jones Operads, homotopy algebra, and iterated integrals for double loop spaces | arXiv

[13] G.-M. Greuel; T.H. Pham Mather–Yau theorem in positive characteristic, J. Algebraic Geom., Volume 26 (2017) no. 2, pp. 347-355

[14] J.A. Guccione; J. Guccione; M.J. Redondo; O.E. Villamayor Hochschild and cyclic homology of hypersurfaces, Adv. Math., Volume 95 (1992) no. 1, pp. 18-60

[15] Z. Hua; B. Keller Cluster categories and rational curves | arXiv

[16] T.V. Kadeishvili The structure of the A()-algebra, and the Hochschild and Harrison cohomologies, Tr. Tbil. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, Volume 91 (1988), pp. 19-27

[17] B. Keller, Derived invariance of higher structures on the Hochschild complex, preprint, 2003, available at the author's home page.

[18] B. Keller Deriving DG categories, Ann. Sci. Éc. Norm. Supér. (4), Volume 27 (1994) no. 1, pp. 63-102

[19] B. Keller On the cyclic homology of exact categories, J. Pure Appl. Algebra, Volume 136 (1999) no. 1, pp. 1-56

[20] B. Keller On differential graded categories, International Congress of Mathematicians, vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151-190

[21] W. Lowen; M. Van den Bergh Hochschild cohomology of Abelian categories and ringed spaces, Adv. Math., Volume 198 (2005) no. 1, pp. 172-221

[22] J.N. Mather; S.S.T. Yau Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math., Volume 69 (1982) no. 2, pp. 243-251

[23] V.C. Nguyen Tate and Tate–Hochschild cohomology for finite dimensional Hopf algebras, J. Pure Appl. Algebra, Volume 217 (2013) no. 10, pp. 1967-1979

[24] D.O. Orlov Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math., Volume 246 (2004) no. 3, pp. 227-248

[25] B. Toe̋n Lectures on dg-categories, Topics in Algebraic and Topological K-Theory, Lecture Notes in Mathematics, vol. 2008, Springer, Berlin, 2011, pp. 243-302

[26] M. Tousi; S. Yassemi Tensor products of some special rings, J. Algebra, Volume 268 (2003) no. 2, pp. 672-676

[27] Z. Wang Gerstenhaber algebra and Deligne's conjecture on Tate–Hochschild cohomology | arXiv

[28] Z. Wang Singular deformation theory and the invariance of the Gerstenhaber algebra structure on the singular Hochschild cohomology | arXiv

[29] Z. Wang Singular Hochschild cohomology and Gerstenhaber algebra structure | arXiv

[30] Z. Wang Singular Hochschild cohomology of radical square zero algebras | arXiv

[31] Z. Wang; M. Rivera Singular Hochschild cohomology and algebraic string operations | arXiv

Cité par Sources :

Commentaires - Politique