[Comparaison des motifs de variétés algébriques lisses]
Étant donné un corps parfait de caractéristique exponentielle e, nous montrons que les Cor-, -, - et -motifs des variétés algébriques lisses à coefficients dans sont localement quasi isomorphes deux à deux. De plus, nous démontrons que leurs catégories triangulées de motifs à coefficients dans sont équivalentes. Une application est donnée pour la suite spectrale motivique bivariante.
Given a perfect field of exponential characteristic e, the Cor-, -, - and -motives of smooth algebraic varieties with -coefficients are shown to be locally quasi-isomorphic to each other. Moreover, it is proved that their triangulated categories of motives with -coefficients are equivalent. An application is given for the bivariant motivic spectral sequence.
Accepté le :
Publié le :
Grigory Garkusha 1
@article{CRMATH_2018__356_11-12_1100_0, author = {Grigory Garkusha}, title = {Comparing motives of smooth algebraic varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {1100--1105}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.11.006}, language = {en}, }
Grigory Garkusha. Comparing motives of smooth algebraic varieties. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1100-1105. doi : 10.1016/j.crma.2018.11.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.006/
[1] Reconstructing rational stable motivic homotopy theory (preprint) | arXiv
[2] K-motives of algebraic varieties, Homol. Homotopy Appl., Volume 14 (2012) no. 2, pp. 211-264
[3] The triangulated category of K-motives , J. K-Theory, Volume 14 (2014) no. 1, pp. 103-137
[4] On the motivic spectral sequence, J. Inst. Math. Jussieu, Volume 17 (2018) no. 1, pp. 137-170
[5] Weight filtrations via commuting automorphisms, K-Theory, Volume 9 (1995), pp. 139-172
[6] On the Pickard group of the -stable homotopy category, Topology, Volume 44 (2005), pp. 609-640
[7] Fields Lectures: Presheaves of Spectra, 2007 www-home.math.uwo.ca/~jardine/papers/Fields-02.pdf (Also available online at)
[8] On the Grayson spectral sequence, Tr. Mat. Inst. Steklova, Volume 241 (2003) no. 2, pp. 218-253 (Russian). English transl. in Proc. Steklov Inst. Math., 241, 2003, pp. 202-237
[9] Bloch–Kato conjecture and motivic cohomology with finite coefficients, Banff, Alberta, Canada, June 7–19, 1998 (B.B. Gordon; J.D. Lewis; S. Müller-Stach; S. Saito; N. Yui, eds.) (Nato Science Series C Math. Phys. Sci.), Volume vol. 548, Kluwer Academic Publishers, Dordrecht, The Netherlands (2000), pp. 117-189
[10] Triangulated category of motives over a field (V. Voevodsky; A. Suslin; E. Friedlander, eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Mathematics Studies, Princeton University Press, 2000
[11] Motivic Cohomology and the K-Theory of Automorphisms, University of Illinois at Urbana-Champaign, IL, USA, 1996 (PhD Thesis)
[12] Thomason's theorem for varieties over algebraically closed fields, Trans. Amer. Math. Soc., Volume 356 (2003) no. 7, pp. 2569-2648
Cité par Sources :
Commentaires - Politique