Comptes Rendus
Homological algebra/Algebraic geometry
Comparing motives of smooth algebraic varieties
[Comparaison des motifs de variétés algébriques lisses]
Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1100-1105.

Étant donné un corps parfait de caractéristique exponentielle e, nous montrons que les Cor-, K0-, K0- et K0-motifs des variétés algébriques lisses à coefficients dans Z[1/e] sont localement quasi isomorphes deux à deux. De plus, nous démontrons que leurs catégories triangulées de motifs à coefficients dans Z[1/e] sont équivalentes. Une application est donnée pour la suite spectrale motivique bivariante.

Given a perfect field of exponential characteristic e, the Cor-, K0-, K0- and K0-motives of smooth algebraic varieties with Z[1/e]-coefficients are shown to be locally quasi-isomorphic to each other. Moreover, it is proved that their triangulated categories of motives with Z[1/e]-coefficients are equivalent. An application is given for the bivariant motivic spectral sequence.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.11.006

Grigory Garkusha 1

1 Department of Mathematics, Swansea University, Fabian Way, Swansea SA1 8EN, UK
@article{CRMATH_2018__356_11-12_1100_0,
     author = {Grigory Garkusha},
     title = {Comparing motives of smooth algebraic varieties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1100--1105},
     publisher = {Elsevier},
     volume = {356},
     number = {11-12},
     year = {2018},
     doi = {10.1016/j.crma.2018.11.006},
     language = {en},
}
TY  - JOUR
AU  - Grigory Garkusha
TI  - Comparing motives of smooth algebraic varieties
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 1100
EP  - 1105
VL  - 356
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2018.11.006
LA  - en
ID  - CRMATH_2018__356_11-12_1100_0
ER  - 
%0 Journal Article
%A Grigory Garkusha
%T Comparing motives of smooth algebraic varieties
%J Comptes Rendus. Mathématique
%D 2018
%P 1100-1105
%V 356
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2018.11.006
%G en
%F CRMATH_2018__356_11-12_1100_0
Grigory Garkusha. Comparing motives of smooth algebraic varieties. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1100-1105. doi : 10.1016/j.crma.2018.11.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.006/

[1] G. Garkusha Reconstructing rational stable motivic homotopy theory (preprint) | arXiv

[2] G. Garkusha; I. Panin K-motives of algebraic varieties, Homol. Homotopy Appl., Volume 14 (2012) no. 2, pp. 211-264

[3] G. Garkusha; I. Panin The triangulated category of K-motives DKeff(k), J. K-Theory, Volume 14 (2014) no. 1, pp. 103-137

[4] G. Garkusha; I. Panin On the motivic spectral sequence, J. Inst. Math. Jussieu, Volume 17 (2018) no. 1, pp. 137-170

[5] D. Grayson Weight filtrations via commuting automorphisms, K-Theory, Volume 9 (1995), pp. 139-172

[6] P. Hu On the Pickard group of the A1-stable homotopy category, Topology, Volume 44 (2005), pp. 609-640

[7] J.F. Jardine Fields Lectures: Presheaves of Spectra, 2007 www-home.math.uwo.ca/~jardine/papers/Fields-02.pdf (Also available online at)

[8] A. Suslin On the Grayson spectral sequence, Tr. Mat. Inst. Steklova, Volume 241 (2003) no. 2, pp. 218-253 (Russian). English transl. in Proc. Steklov Inst. Math., 241, 2003, pp. 202-237

[9] A. Suslin; V. Voevodsky Bloch–Kato conjecture and motivic cohomology with finite coefficients, Banff, Alberta, Canada, June 7–19, 1998 (B.B. Gordon; J.D. Lewis; S. Müller-Stach; S. Saito; N. Yui, eds.) (Nato Science Series C Math. Phys. Sci.), Volume vol. 548, Kluwer Academic Publishers, Dordrecht, The Netherlands (2000), pp. 117-189

[10] V. Voevodsky Triangulated category of motives over a field (V. Voevodsky; A. Suslin; E. Friedlander, eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Mathematics Studies, Princeton University Press, 2000

[11] M.E. Walker Motivic Cohomology and the K-Theory of Automorphisms, University of Illinois at Urbana-Champaign, IL, USA, 1996 (PhD Thesis)

[12] M.E. Walker Thomason's theorem for varieties over algebraically closed fields, Trans. Amer. Math. Soc., Volume 356 (2003) no. 7, pp. 2569-2648

Cité par Sources :

Commentaires - Politique