[Mesures de Clark pluriharmoniques et analogues des espaces modèles]
Soit la boule unité de , . Étant donnée une fonction intérieure , nous étudions la famille correspondante , , de mesures de Clark pluriharmoniques sur la sphère complexe. Nous introduisons et étudions les opérateurs unitaires entre des analogues des espaces modèles et , . En particulier, nous caractérisons explicitement l'ensemble des telles que soit une mesure pluriharmonique.
Let denote the unit ball of , . Given an inner function , we study the corresponding family , , of pluriharmonic Clark measures on the complex sphere. We introduce and investigate related unitary operators mapping analogs of model spaces onto , . In particular, we explicitly characterize the set of such that is a pluriharmonic measure.
Accepté le :
Publié le :
Aleksei B. Aleksandrov 1, 2 ; Evgueni Doubtsov 1
@article{CRMATH_2019__357_1_7_0, author = {Aleksei B. Aleksandrov and Evgueni Doubtsov}, title = {Pluriharmonic {Clark} measures and analogs of model spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {7--12}, publisher = {Elsevier}, volume = {357}, number = {1}, year = {2019}, doi = {10.1016/j.crma.2018.11.013}, language = {en}, }
Aleksei B. Aleksandrov; Evgueni Doubtsov. Pluriharmonic Clark measures and analogs of model spaces. Comptes Rendus. Mathématique, Volume 357 (2019) no. 1, pp. 7-12. doi : 10.1016/j.crma.2018.11.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.013/
[1] One dimensional perturbations of restricted shifts, J. Anal. Math., Volume 25 (1972), pp. 169-191
[2] A-measures on complex manifolds and some applications, J. Funct. Anal., Volume 11 (1972), pp. 393-400
[3] Singular parts of pluriharmonic measures, Zap. Nauč. Semin. POMI, Volume 217 (1994) no. 2, pp. 1790-1793 no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 22, 54–58, 219 (in Russian); translation in J. Math. Sci. (N.Y.), 85, 1997
[4] Clark theory in the Drury–Arveson space, J. Funct. Anal., Volume 266 (2014) no. 6, pp. 3855-3893
[5] Applications of spectral measures, Recent Advances in Operator-Related Function Theory, Contemp. Math., vol. 393, American Mathematical Society, Providence, RI, USA, 2006, pp. 15-27
[6] Aleksandrov–Clark measures, Recent Advances in Operator-Related Function Theory, Contemp. Math., vol. 393, American Mathematical Society, Providence, RI, USA, 2006, pp. 1-14
[7] Function Theory in the Unit Ball of , Grundlehren der Mathematischen Wissenschaften, vol. 241, Springer-Verlag, New York, Berlin, 1980
[8] An elementary introduction to Clark measures, Topics in Complex Analysis and Operator Theory, Univ. Málaga, Málaga, Spain, 2007, pp. 85-136
[9] Introduction to complex analysis. Part II, Functions of Several Variables, Translations of Mathematical Monographs, vol. 110, American Mathematical Society, Providence, RI, USA, 1992 translated from the third (1985) Russian edition by J.S. Joel
Cité par Sources :
☆ This research was supported by the Russian Science Foundation (grant No. 18-11-00053).
Commentaires - Politique