In this note, we propose in the full generality a link between the BD entropy introduced by D. Bresch and B. Desjardins for the viscous shallow-water equations and the Bernis–Friedman (called BF) dissipative entropy introduced to study the lubrication equations. Different dissipative entropies are obtained playing with the drag terms on the viscous shallow-water equations. It helps for instance to prove the global existence of nonnegative weak solutions to the lubrication equations starting from the global existence of nonnegative weak solutions to appropriate viscous shallow-water equations.
Dans cette note, on propose un lien général entre la BD entropie introduite par D. Bresch et B. Desjardins pour les équations de Saint-Venant visqueuses et l'entropie dissipative de Bernis–Friedman (notée BF) introduite pour étudier les équations de lubrification. Différentes entropies dissipatives sont obtenues suivant le choix des termes de traînée sur Saint-Venant visqueux. Ce lien entre ces deux outils mathématiques aide, par exemple, à prouver l'existence de solutions faibles positives pour les équations de lubrification en partant de l'existence de solutions faibles positives pour des équations de Saint-Venant visqueuses bien choisies.
Accepted:
Published online:
Didier Bresch 1; Mathieu Colin 2; Khawla Msheik 1; Pascal Noble 3; Xi Song 2
@article{CRMATH_2019__357_1_1_0, author = {Didier Bresch and Mathieu Colin and Khawla Msheik and Pascal Noble and Xi Song}, title = {BD entropy and {Bernis{\textendash}Friedman} entropy}, journal = {Comptes Rendus. Math\'ematique}, pages = {1--6}, publisher = {Elsevier}, volume = {357}, number = {1}, year = {2019}, doi = {10.1016/j.crma.2018.11.009}, language = {en}, }
TY - JOUR AU - Didier Bresch AU - Mathieu Colin AU - Khawla Msheik AU - Pascal Noble AU - Xi Song TI - BD entropy and Bernis–Friedman entropy JO - Comptes Rendus. Mathématique PY - 2019 SP - 1 EP - 6 VL - 357 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2018.11.009 LA - en ID - CRMATH_2019__357_1_1_0 ER -
Didier Bresch; Mathieu Colin; Khawla Msheik; Pascal Noble; Xi Song. BD entropy and Bernis–Friedman entropy. Comptes Rendus. Mathématique, Volume 357 (2019) no. 1, pp. 1-6. doi : 10.1016/j.crma.2018.11.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.009/
[1] Higher-order nonlinear degenerate parabolic equations, J. Differ. Equ., Volume 83 (1990) no. 1, pp. 179-206
[2] The lubrication approximation for thin viscous films: the moving contact line with a “porous media” cut-off of van der Waals interactions, Nonlinearity, Volume 7 (1994) no. 6, pp. 1535-1564
[3] Long-wave instabilities and saturation in thin film equations, Commun. Pure Appl. Math., Volume 51 (1998) no. 6, pp. 625-661
[4] From conservative to dissipative systems through quadratic change of time, with application to the curve-shrotening flow, Arch. Ration. Mech. Anal., Volume 227 (2018), pp. 545-565
[5] D. Bresch, M. Colin, K. Msheik, P. Noble, X. Song, Lubrication/shallow-water system: BD and Bernis–Friedman entropies, 2018, forthcoming.
[6] Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., Volume 238 (2003) no. 1–2, pp. 211-223
[7] Quelques modèles diffusifs capillaires de type Korteweg, C. R. Mecanique, Volume 332 (2004), pp. 881-886
[8] On long-time asymptotic for viscous hydrodynamic models of collective behaviour with damping and nonlocal interactions, Math. Models Methods Appl. Sci. (2018) (in press)
[9] Asymptotic decay and non-rupture of viscous sheets, Z. Angew. Math. Phys. (2018), pp. 69-79
[10] On Bernis' interpolation inequalities in multiple space dimensions, Z. Anal. Anwend., Volume 20 (2001), pp. 987-998
[11] Electrified thin films: global existence of non-negative solutions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 11, pp. 413-433
[12] Weak solutions to lubrication equations in the presence of strong slippage, Methods Appl. Anal., Volume 18 (2011) no. 2, pp. 183-202
[13] Vanishing of vacuum states and blow-up phenomena of the compressible Navier–Stokes equations, Commun. Math. Phys., Volume 281 (2008), pp. 401-444
[14] Lubrication models with small to large slip lengths, J. Eng. Math., Volume 53 (2005) no. 3–4, pp. 359-383
Cited by Sources:
Comments - Policy