[Analyse des temps-fréquences sur l'anneau des adèles des rationnels]
We show that the construction of Gabor frames in
Nous montrons que la construction de trames (ou repères) de Gabor de
Accepté le :
Publié le :
Ulrik B.R. Enstad 1 ; Mads S. Jakobsen 2 ; Franz Luef 2
@article{CRMATH_2019__357_2_188_0, author = {Ulrik B.R. Enstad and Mads S. Jakobsen and Franz Luef}, title = {Time-frequency analysis on the adeles over the rationals}, journal = {Comptes Rendus. Math\'ematique}, pages = {188--199}, publisher = {Elsevier}, volume = {357}, number = {2}, year = {2019}, doi = {10.1016/j.crma.2018.12.004}, language = {en}, }
Ulrik B.R. Enstad; Mads S. Jakobsen; Franz Luef. Time-frequency analysis on the adeles over the rationals. Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, pp. 188-199. doi : 10.1016/j.crma.2018.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.12.004/
[1] Gabor frames on non-Archimedean fields, Int. J. Geom. Methods Mod. Phys., Volume 15 (2018) no. 05
[2] p-adic multiresolution analysis and wavelet frames, Fourier Anal. Appl., Volume 16 (2010) no. 5, pp. 693-714
[3] J.J. Benedetto, R.L. Benedetto, Frames of translates for number-theoretic groups, ArXiv e-prints, 2018.
[4] An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser, Basel, 2016
[5] Fourier-like frames on locally compact Abelian groups, J. Approx. Theory, Volume 192 (2015), pp. 82-101
[6] The abc-problem for Gabor systems, Mem. Amer. Math. Soc., Volume 244 (2016) no. 1152 (ix+99)
[7] Automorphe Formen, Springer, Heidelberg, Germany, 2010
[8] On a new Segal algebra, Monatshefte Math., Volume 92 (1981), pp. 269-289
[9] Modulation Spaces on Locally Compact Abelian Groups, University of Vienna, January 1983 (Technical report)
[10] Modulation spaces of locally compact Abelian groups, Chennai, January 2002 (R. Radha; M. Krishna; S. Thangavelu, eds.), Allied Publishers, New Delhi (2003), pp. 1-56
[11] Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process., Int. J., Volume 5 (2006) no. 2, pp. 109-140
[12] A Banach space of test functions for Gabor analysis (H.G. Feichtinger; T. Strohmer, eds.), Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, 1998, pp. 123-170
[13] Aspects of Gabor analysis on locally compact Abelian groups (H.G. Feichtinger; T. Strohmer, eds.), Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, MA, USA, 1998, pp. 123-170
[14] Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, USA, 2001
[15] A pedestrian's approach to pseudodifferential operators (C. Heil, ed.), Harmonic Analysis and Applications, Volume in Honor of John J. Benedetto's 65th Birthday, Birkhäuser Boston, Boston, MA, 2006, pp. 139-169
[16] Wiener's lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc., Volume 17 (2004), pp. 1-18
[17] Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions, Invent. Math., Volume 211 (2018) no. 3, pp. 1119-1148
[18] Gabor frames and totally positive functions, Duke Math. J., Volume 162 (2013) no. 6, pp. 1003-1031
[19] Pseudodifferential operators on locally compact abelian groups and Sjöstrand's symbol class, J. Reine Angew. Math., Volume 613 (2007), pp. 121-146
[20] Commutative Harmonic Analysis II. Group Methods in Commutative Harmonic Analysis, Springer, Berlin, 1998 (Translated from Russian)
[21] Abstract Harmonic Analysis I, Grundlehren Math. Wiss., vol. 115, Springer, Berlin, 1963
[22] On a (no longer) new Segal algebra: a review of the Feichtinger algebra, J. Fourier Anal. Appl., Volume 24 (2018) no. 6, pp. 1579-1660
[23] Density and duality theorems for regular Gabor frames, J. Funct. Anal., Volume 270 (2016) no. 1, pp. 229-263
[24] M.S. Jakobsen, F. Luef, Duality of Gabor frames and Heisenberg modules, ArXiv e-prints, 2018.
[25] Zak transforms with few zeros and the tie (H.G. Feichtinger; T. Strohmer, eds.), Advances in Gabor Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, Basel, 2003, pp. 31-70
[26] Cuntz–Li algebras from a-adic numbers, Rev. Roum. Math. Pures Appl., Volume 59 (2014) no. 3, pp. 331-370
[27] Quincunx multiresolution analysis for
[28] Zeros of the Zak transform on locally compact abelian groups, Proc. Amer. Math. Soc., Volume 126 (1998) no. 12, pp. 3561-3569
[29] The 2-adic ring
[30] Noncommutative solenoids and their projective modules, Commu. Noncommut. Harmon. Anal. Appl., Volume 603 (2013), pp. 35-53
[31] Explicit construction of equivalence bimodules between noncommutative solenoids, Contemp. Math., Amer. Math. Soc., Volume 650 (2015), pp. 111-140
[32] Noncommutative solenoids and the Gromov–Hausdorff propinquity, Proc. Amer. Math. Soc., Volume 145 (2017), pp. 2043-2057
[33] Basic results of Gabor frame on local fields, Chin. Ann. Math., Volume 28 (2007) no. 2, pp. 165-176
[34] A characterization of the minimal strongly character invariant Segal algebra, Ann. Inst. Fourier (Grenoble), Volume 30 (1980), pp. 129-139
[35] Projections in noncommutative tori and Gabor frames, Proc. Amer. Math. Soc., Volume 139 (2011) no. 2, pp. 571-582
[36] Frames in the Bargmann space of entire functions, Entire and Subharmonic Functions, Advances in Soviet Mathematics, vol. 11, American Mathematical Society (AMS), Providence, RI, 1992, pp. 167-180
[37] Introduction to Modern Number Theory, Encyclopaedia Math. Sci., vol. 49, Springer-Verlag, Berlin, 2005
[38] Fourier Analysis on Number Fields, Springer, New York, 1999
[39] Metaplectic Groups and Segal Algebras, Lecture Notes in Mathematics, Springer, Berlin, 1989
[40] Projective modules over higher-dimensional noncommutative tori, Can. J. Math., Volume 40 (1988) no. 2, pp. 257-338
[41] Density theorems for sampling and interpolation in the Bargmann–Fock space. I, J. Reine Angew. Math., Volume 429 (1992), pp. 91-106
[42] Gabor frames on local fields of positive characteristic, Tbil. Math. J., Volume 9 (2016) no. 2, pp. 129-139
[43] Gabor-type expansions on local fields, SeMa J., Volume 75 (2018) no. 3, pp. 485-498
[44] p-adic Haar multiresolution analysis and pseudo-differential operators, J. Fourier Anal. Appl., Volume 15 (2009) no. 3, pp. 366-393
- Maximally localized Gabor orthonormal bases on locally compact abelian groups, Advances in Mathematics, Volume 451 (2024), p. 24 (Id/No 109786) | DOI:10.1016/j.aim.2024.109786 | Zbl:1555.43004
- Deformations and Balian-Low theorems for Gabor frames on the adeles, Advances in Mathematics, Volume 410 (2022), p. 46 (Id/No 108771) | DOI:10.1016/j.aim.2022.108771 | Zbl:1512.43006
- Quasi-Banach modulation spaces and localization operators on locally compact abelian groups, Banach Journal of Mathematical Analysis, Volume 16 (2022) no. 4, p. 71 (Id/No 52) | DOI:10.1007/s43037-022-00205-6 | Zbl:1506.43002
- Groupoids and Hermitian Banach
-algebras, International Journal of Mathematics, Volume 33 (2022) no. 14, p. 25 (Id/No 2250090) | DOI:10.1142/s0129167x22500902 | Zbl:1516.22004 - The density theorem for projective representations via twisted group von Neumann algebras, Journal of Mathematical Analysis and Applications, Volume 511 (2022) no. 2, p. 25 (Id/No 126072) | DOI:10.1016/j.jmaa.2022.126072 | Zbl:1494.46056
- Modulation spaces as a smooth structure in noncommutative geometry, Banach Journal of Mathematical Analysis, Volume 15 (2021) no. 2, p. 31 (Id/No 35) | DOI:10.1007/s43037-020-00117-3 | Zbl:1470.46098
- The Balian-Low theorem for locally compact abelian groups and vector bundles, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 139 (2020), pp. 143-176 | DOI:10.1016/j.matpur.2019.12.005 | Zbl:1508.42034
- Heisenberg modules as function spaces, The Journal of Fourier Analysis and Applications, Volume 26 (2020) no. 2, p. 28 (Id/No 24) | DOI:10.1007/s00041-020-09729-7 | Zbl:1442.42068
- Duality of Gabor frames and Heisenberg modules, Journal of Noncommutative Geometry, Volume 14 (2020) no. 4, pp. 1445-1500 | DOI:10.4171/jncg/413 | Zbl:1481.46055
- Sampling and periodization of generators of Heisenberg modules, International Journal of Mathematics, Volume 30 (2019) no. 10, p. 37 (Id/No 1950051) | DOI:10.1142/s0129167x19500514 | Zbl:1439.46044
Cité par 10 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier