Comptes Rendus
Partial differential equations
Exact controllability to trajectories for entropy solutions to scalar conservation laws in several space dimensions
[Contrôlabilité exacte aux trajectoires pour des lois de conservation scalaires multidimensionnelles]
Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 263-271.

On décrit dans cet article une nouvelle méthode permettant d'obtenir un résultat de contrôlabilité exacte aux trajectoires pour des lois de conservation scalaires en plusieurs dimensions d'espace dans le cadre des solutions entropiques et sous une simple hypothèse de non-dégénérescence du flux et une hypothèse géométrique naturelle.

We describe a new method that allows us to obtain a result of exact controllability to trajectories of multidimensional conservation laws in the context of entropy solutions and under a mere non-degeneracy assumption on the flux and a natural geometric condition.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.01.012
Carlotta Donadello 1 ; Vincent Perrollaz 2

1 Université de Bourgogne Franche-Comté, Laboratoire de mathématiques, CNRS UMR6623, 16, route de Gray, 25000 Besançon, France
2 Université de Tours, Institut Denis-Poisson, CNRS UMR 7013, Parc de Grandmont, 37000 Tours, France
@article{CRMATH_2019__357_3_263_0,
     author = {Carlotta Donadello and Vincent Perrollaz},
     title = {Exact controllability to trajectories for entropy solutions to scalar conservation laws in several space dimensions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {263--271},
     publisher = {Elsevier},
     volume = {357},
     number = {3},
     year = {2019},
     doi = {10.1016/j.crma.2019.01.012},
     language = {en},
}
TY  - JOUR
AU  - Carlotta Donadello
AU  - Vincent Perrollaz
TI  - Exact controllability to trajectories for entropy solutions to scalar conservation laws in several space dimensions
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 263
EP  - 271
VL  - 357
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2019.01.012
LA  - en
ID  - CRMATH_2019__357_3_263_0
ER  - 
%0 Journal Article
%A Carlotta Donadello
%A Vincent Perrollaz
%T Exact controllability to trajectories for entropy solutions to scalar conservation laws in several space dimensions
%J Comptes Rendus. Mathématique
%D 2019
%P 263-271
%V 357
%N 3
%I Elsevier
%R 10.1016/j.crma.2019.01.012
%G en
%F CRMATH_2019__357_3_263_0
Carlotta Donadello; Vincent Perrollaz. Exact controllability to trajectories for entropy solutions to scalar conservation laws in several space dimensions. Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 263-271. doi : 10.1016/j.crma.2019.01.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.01.012/

[1] Adimurthi; S.S. Ghoshal; V. Gowda Exact controllability of scalar conservation laws with strictly convex flux, Math. Control Relat. Fields, Volume 4 (2014), pp. 401-449

[2] K. Ammar; P. Wittbold; J. Carillo Scalar conservation laws with general boundary conditions and continuous flux function, J. Differ. Equ., Volume 228 (2006), pp. 111-139

[3] F. Ancona; G.M. Coclite On the attainable set for Temple class systems with boundary controls, SIAM J. Control Optim., Volume 43 (2005) no. 6, pp. 2166-2190

[4] F. Ancona; A. Marson On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim., Volume 36 (1998) no. 1, pp. 290-312

[5] F. Ancona; A. Marson Asymptotic stabilization of systems of conservation laws by controls acting at a single boundary point, Control Methods in PDE-Dynamical Systems, Contemp. Math., vol. 426, American Mathematical Society, Providence, RI, USA, 2007, pp. 1-43

[6] B. Andreianov; C. Donadello; S.S. Ghoshal; U. Razafison On the attainable set for a class of triangular systems of conservation laws, J. Evol. Equ., Volume 15 (2015) no. 3, pp. 503-532

[7] B. Andreianov; C. Donadello; A. Marson On the attainable set for a scalar nonconvex conservation law, SIAM J. Control Optim., Volume 55 (2017) no. 4, pp. 2235-2270

[8] C. Bardos; A.-Y. Leroux; J.-C. Nédélec First order quasilinear equations with boundary conditions, Commun. Partial Differ. Equ., Volume 9 (1979), pp. 1017-1034

[9] G. Bastin; J.-M. Coron Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Springer PLNDE Subseries in Control, vol. 88, 2016

[10] S. Blandin; X. Litrico; M.L. Dalle Monache; B. Piccoli; T. Bayen Regularity and Lyapunov stabilization of weak entropy solutions to scalar conservation laws, IEEE Trans. Autom. Control, Volume 62 (2017) no. 4, pp. 1620-1635

[11] A. Bressan Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford University Press, Oxford, UK, 2000

[12] A. Bressan; G.M. Coclite On the boundary control of systems of conservation laws, SIAM J. Control Optim., Volume 41 (2002) no. 2, pp. 607-622

[13] M. Chapouly Global controllability of non-viscous and viscous Burgers type equations, SIAM J. Control Optim., Volume 48 (2009) no. 3, pp. 1567-1599

[14] M. Corghi; A. Marson On the attainable set for scalar balance laws with distributed control, ESAIM Control Optim. Calc. Var., Volume 22 (2016), pp. 236-266

[15] J.-M. Coron On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain, SIAM J. Control Optim., Volume 37 (1999) no. 6, pp. 1874-1896

[16] J.-M. Coron Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, USA, 2007

[17] J.-M. Coron; G. Bastin; B. d'Andréa-Novel Dissipative boundary conditions for one dimensional nonlinear hyperbolic systems, SIAM J. Control Optim., Volume 47 (2008) no. 3, pp. 1460-1498

[18] J.-M. Coron; S. Ervedoza; S.S. Ghoshal; O. Glass; V. Perrollaz Dissipative boundary conditions for 2×2 hyperbolic systems of conservation laws for entropy solutions in BV, J. Differ. Equ., Volume 262 (2017), pp. 1-30

[19] C.M. Dafermos Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Indiana Univ. Math. J., Volume 26 (1977), pp. 1097-1119

[20] C.M. Dafermos Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften, vol. 325, Springer-Verlag, Berlin, 2005

[21] O. Glass On the controllability of the 1-D isentropic Euler equation, J. Eur. Math. Soc., Volume 9 (2007) no. 3, pp. 427-486

[22] O. Glass On the controllability of the non-isentropic 1-D Euler equation, J. Differ. Equ., Volume 257 (2014), pp. 638-719

[23] O. Glass; S. Guerrero On the uniform controllability of the Burgers equation, SIAM J. Control Optim., Volume 46 (2007) no. 4, pp. 1211-1238

[24] T. Horsin On the controllability of the Burger equation, ESAIM Control Optim. Calc. Var., Volume 3 (1998), pp. 83-95

[25] S.N. Kruzkov First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), Volume 81 (1970) no. 123, pp. 228-255

[26] M. Léautaud Uniform controllability of scalar conservation laws in the vanishing viscosity limit, SIAM J. Control Optim., Volume 50 (2012), pp. 1661-1699

[27] A.Y. Leroux Étude du problème mixte pour une équation quasi linéaire du premier ordre, C. R. Acad. Sci. Paris, Ser. A, Volume 285 (1977), pp. 351-354

[28] T. Li Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, vol. 3, American Institute of Mathematical Sciences (AIMS), 2010

[29] T. Li; L. Yu One-sided exact boundary null controllability of entropy solutions to a class of hyperbolic systems of conservation laws, J. Math. Pures Appl. (9), Volume 107 (2017) no. 1, pp. 1-40

[30] J. Malek; J. Necas; M. Rokyta; M. Ruzicka Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall, London, 1996

[31] F. Otto Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris, Ser. I, Volume 322 (1996) no. 8, pp. 729-734

[32] V. Perrollaz Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions, SIAM J. Control Optim., Volume 50 (2012) no. 4, pp. 2025-2045

[33] V. Perrollaz Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) no. 5, pp. 879-915

[34] V. Perrollaz Asymptotic stabilization of stationary shock waves using boundary feedback law (preprint) | arXiv

[35] A. Vasseur Strong traces for solutions to multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., Volume 170 (2001) no. 3, pp. 181-193

Cité par Sources :

Commentaires - Politique