Comptes Rendus
Mathematical analysis/Partial differential equations
An Ikehara-type theorem for functions convergent to zero
[Un théorème de type Ikehara pour les fonctions convergeant vers zéro]
Comptes Rendus. Mathématique, Volume 357 (2019) no. 4, pp. 333-338.

Nous établissons un analogue du théorème de Ikehara pour les fonctions positives non croissantes qui tendent vers zéro. En particulier, cela fournit une démonstration complète des énoncés formulés par Diekmann et Kaper (1978) [5] et par Carr et Chmaj (2004) [1], qui sont maintenant largement utilisés pour démontrer l'unicité des ondes progressives dans diverses équations de réaction–diffusion.

We establish an analogue of the Ikehara theorem for positive non-increasing functions convergent to zero. In particular, this provides a complete proof of the results formulated in Diekmann & Kaper (1978) [5] and Carr & Chmaj (2004) [1], which are widely used nowadays to prove the uniqueness of traveling waves for various reaction–diffusion equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.04.007
Dmitri Finkelshtein 1 ; Pasha Tkachov 2

1 Department of Mathematics, Swansea University, Bay Campus, Fabian Way, Swansea SA2 8EN, UK
2 Gran Sasso Science Institute, Viale Francesco Crispi, 7, 67100 L'Aquila AQ, Italy
@article{CRMATH_2019__357_4_333_0,
     author = {Dmitri Finkelshtein and Pasha Tkachov},
     title = {An {Ikehara-type} theorem for functions convergent to zero},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {333--338},
     publisher = {Elsevier},
     volume = {357},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crma.2019.04.007},
     language = {en},
}
TY  - JOUR
AU  - Dmitri Finkelshtein
AU  - Pasha Tkachov
TI  - An Ikehara-type theorem for functions convergent to zero
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 333
EP  - 338
VL  - 357
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2019.04.007
LA  - en
ID  - CRMATH_2019__357_4_333_0
ER  - 
%0 Journal Article
%A Dmitri Finkelshtein
%A Pasha Tkachov
%T An Ikehara-type theorem for functions convergent to zero
%J Comptes Rendus. Mathématique
%D 2019
%P 333-338
%V 357
%N 4
%I Elsevier
%R 10.1016/j.crma.2019.04.007
%G en
%F CRMATH_2019__357_4_333_0
Dmitri Finkelshtein; Pasha Tkachov. An Ikehara-type theorem for functions convergent to zero. Comptes Rendus. Mathématique, Volume 357 (2019) no. 4, pp. 333-338. doi : 10.1016/j.crma.2019.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.04.007/

[1] J. Carr; A. Chmaj Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., Volume 132 (2004) no. 8, pp. 2433-2439

[2] J. Coville; J. Dávila; S. Martínez Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differ. Equ., Volume 244 (2008) no. 12, pp. 3080-3118

[3] G. Debruyne; J. Vindas Generalization of the Wiener–Ikehara theorem, Ill. J. Math., Volume 60 (2016) no. 2, pp. 613-624

[4] H. Delange Généralisation du théorème de Ikehara, Ann. Sci. Éc. Norm. Supér., Volume 71 (1954), pp. 213-242

[5] O. Diekmann; H.G. Kaper On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., Volume 2 (1978) no. 6, pp. 721-737

[6] L. Girardin Non-cooperative Fisher–KPP systems: asymptotic behavior of traveling waves, Math. Models Methods Appl. Sci., Volume 28 (2018) no. 6, pp. 1067-1104

[7] J.-S. Guo; C.-H. Wu Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differ. Equ., Volume 252 (2012), pp. 4357-4391

[8] W. Ellison; F. Ellison Prime Numbers, A Wiley-Interscience Publication. John Wiley & Sons Inc./Hermann, New York/Paris, 1985 (xii+417 pp)

[9] J.-C. Evard; F. Jafari A complex Rolle's theorem, Amer. Math. Mon., Volume 99 (1992) no. 9, pp. 858-861

[10] D. Finkelshtein; Y. Kondratiev; P. Tkachov Doubly nonlocal Fisher–KPP equation: speeds and uniqueness of traveling waves, J. Math. Anal. Appl., Volume 475 (2019) no. 1, pp. 94-122

[11] S. Ikehara An extension of Landau's theorem in the analytical theory of numbers, J. Math. Phys., Volume 10 (1931), pp. 1-12

[12] J. Korevaar A century of complex Tauberian theory, Bull. Amer. Math. Soc. (N.S.), Volume 39 (2002) no. 4, pp. 475-531

[13] T.S. Lim; A. Zlatoš Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion, Trans. Amer. Math. Soc., Volume 368 (2016) no. 12, pp. 8615-8631

[14] S. Révész; A. de Roton Generalization of the effective Wiener–Ikehara theorem, Int. J. Number Theory, Volume 9 (2013) no. 8, pp. 2091-2128

[15] G. Tenenbaum Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, UK, 1995 xvi+448 pp. Translated from the second French edition (1995) by C. B. Thomas

[16] E. Trofimchuk; M. Pinto; S. Trofimchuk Monotone waves for non-monotone and non-local monostable reaction–diffusion equations, J. Differ. Equ., Volume 261 (2016) no. 2, pp. 1203-1236

[17] P. Weng; L. Liu; Z. Xu Monotonicity, asymptotic behaviors and uniqueness of traveling waves to a nonlocal dispersal equation modeling an age-structured population, Nonlinear Anal., Real World Appl., Volume 39 (2018), pp. 58-76

[18] D.V. Widder The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, NJ, USA, 1941 (x+406 p)

[19] G.-B. Zhang; W.-T. Li; Z.-C. Wang Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equ., Volume 252 (2012) no. 9, pp. 5096-5124

Cité par Sources :

Commentaires - Politique