For and M the centered Hardy–Littlewood maximal operator on , we consider whether there is some such that . We prove this for . For , we prove the inequality for indicator functions and for unimodal functions.
Soient et M la fonction maximale de Hardy–Littlewood sur . Nous étudions l'existence d'un tel que . Nous l'établissons pour . Pour , nous prouvons l'inégalité pour les fonctions indicatrices et les fonctions unimodales.
Accepted:
Published online:
Paata Ivanisvili 1; Samuel Zbarsky 1
@article{CRMATH_2019__357_4_339_0, author = {Paata Ivanisvili and Samuel Zbarsky}, title = {Centered {Hardy{\textendash}Littlewood} maximal operator on the real line: {Lower} bounds}, journal = {Comptes Rendus. Math\'ematique}, pages = {339--344}, publisher = {Elsevier}, volume = {357}, number = {4}, year = {2019}, doi = {10.1016/j.crma.2019.03.003}, language = {en}, }
Paata Ivanisvili; Samuel Zbarsky. Centered Hardy–Littlewood maximal operator on the real line: Lower bounds. Comptes Rendus. Mathématique, Volume 357 (2019) no. 4, pp. 339-344. doi : 10.1016/j.crma.2019.03.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.03.003/
[1] Best constants for uncentred maximal functions, Bull. Lond. Math. Soc., Volume 29 (1997) no. 1, pp. 60-64
[2] Lower bounds for uncentered maximal functions in any dimension, Int. Math. Res. Not., Volume 2017 (2016) no. 8, pp. 2464-2479
[3] Fixed points of the Hardy–Littlewood maximal operator, Collect. Math., Volume 52 (2001) no. 3, pp. 289-294
[4] Some remarks on the Fefferman–Stein inequality, J. Anal. Math., Volume 112 (2010), pp. 329-349
[5] Local lower norm estimates for dyadic maximal operators and related Bellman functions, J. Geom. Anal., Volume 27 (2017) no. 3, pp. 1940-1950
Cited by Sources:
Comments - Policy