We derive Cramér-type moderate deviations for stationary sequences of bounded random variables. Our results imply the moderate deviation principles and a Berry–Esseen bound. Applications to quantile coupling inequalities, functions of ϕ-mixing sequences, and contracting Markov chains are discussed.
Nous dérivons les déviations modérées de type Cramér pour des suites stationnaires de variables aléatoires bornées. Nos résultats impliquent les principes de déviation modérée et un théorème de Berry–Esseen. Nous discutons les applications aux inégalités de couplage quantile et aux fonctions de suites mélangeantes et de chaînes de Markov contractantes.
Accepted:
Published online:
Xiequan Fan 1
@article{CRMATH_2019__357_5_463_0, author = {Xiequan Fan}, title = {Cram\'er-type moderate deviations for stationary sequences of bounded random variables}, journal = {Comptes Rendus. Math\'ematique}, pages = {463--477}, publisher = {Elsevier}, volume = {357}, number = {5}, year = {2019}, doi = {10.1016/j.crma.2019.05.003}, language = {en}, }
Xiequan Fan. Cramér-type moderate deviations for stationary sequences of bounded random variables. Comptes Rendus. Mathématique, Volume 357 (2019) no. 5, pp. 463-477. doi : 10.1016/j.crma.2019.05.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.05.003/
[1] On martingale approximations and the quenched weak invariance principle, Ann. Probab., Volume 42 (2014) no. 2, pp. 760-793
[2] Moderate deviations and associated Laplace approximations for sums of independent random vectors, Trans. Amer. Math. Soc., Volume 329 (1992) no. 1, pp. 357-375
[3] Moderate deviations for stationary sequences of bounded random variables, Ann. Inst. Henri Poincaré Probab. Stat., Volume 45 (2009) no. 2, pp. 453-476
[4] Rates of convergence for minimal distances in the central limit theorem under projective criteria, Electron. J. Probab., Volume 14 (2009), pp. 978-1011
[5] Moderate deviations for martingales with bounded jumps, Electron. Commun. Probab., Volume 1 (1996), pp. 11-17
[6] Moderate deviations for martingale differences and applications to ϕ-mixing sequences, Stoch. Stoch. Rep., Volume 73 (2002), pp. 37-63
[7] Cramér large deviation expansions for martingales under Bernstein's condition, Stoch. Process. Appl., Volume 123 (2013) no. 11, pp. 3919-3942
[8] On tail probabilities for martingales, Ann. Probab., Volume 3 (1975) no. 1, pp. 100-118
[9] Moderate deviations for martingales and mixing random processes, Stoch. Process. Appl., Volume 61 (1996), pp. 263-275
[10] On moderate deviations for martingales, Ann. Probab., Volume 25 (1997), pp. 152-184
[11] Large deviations for martingales via Cramér's method, Stoch. Process. Appl., Volume 85 (2000), pp. 279-293
[12] An asymptotic expansion for probabilities of moderate deviations for multivariate martingales, J. Theor. Probab., Volume 19 (2006), pp. 1-44
[13] Quantile coupling inequalities and their applications, Probab. Surv., Volume 9 (2012), pp. 439-479
[14] A maximal -inequality for stationary sequences and its applications, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 541-550
[15] On probabilities of large deviations for martingales, Liet. Mat. Rink., Volume 30 (1990), pp. 784-795
[16] Large deviations for martingales with some applications, Acta Appl. Math., Volume 38 (1995), pp. 109-129
[17] Sur le théoreme de Berry–Esseen pour les suites faiblement dépendantes, Probab. Theory Relat. Fields, Volume 104 (1996) no. 2, pp. 255-282
[18] Nonlinear system theory: another look at dependence, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 14150-14154
[19] Moderate deviations for stationary processes, Stat. Sin., Volume 18 (2008), pp. 769-782
Cited by Sources:
Comments - Policy