Comptes Rendus
Probability theory
Cramér-type moderate deviations for stationary sequences of bounded random variables
Comptes Rendus. Mathématique, Volume 357 (2019) no. 5, pp. 463-477.

We derive Cramér-type moderate deviations for stationary sequences of bounded random variables. Our results imply the moderate deviation principles and a Berry–Esseen bound. Applications to quantile coupling inequalities, functions of ϕ-mixing sequences, and contracting Markov chains are discussed.

Nous dérivons les déviations modérées de type Cramér pour des suites stationnaires de variables aléatoires bornées. Nos résultats impliquent les principes de déviation modérée et un théorème de Berry–Esseen. Nous discutons les applications aux inégalités de couplage quantile et aux fonctions de suites mélangeantes et de chaînes de Markov contractantes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2019.05.003

Xiequan Fan 1

1 Center for Applied Mathematics, Tianjin University, Tianjin, China
@article{CRMATH_2019__357_5_463_0,
     author = {Xiequan Fan},
     title = {Cram\'er-type moderate deviations for stationary sequences of bounded random variables},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {463--477},
     publisher = {Elsevier},
     volume = {357},
     number = {5},
     year = {2019},
     doi = {10.1016/j.crma.2019.05.003},
     language = {en},
}
TY  - JOUR
AU  - Xiequan Fan
TI  - Cramér-type moderate deviations for stationary sequences of bounded random variables
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 463
EP  - 477
VL  - 357
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2019.05.003
LA  - en
ID  - CRMATH_2019__357_5_463_0
ER  - 
%0 Journal Article
%A Xiequan Fan
%T Cramér-type moderate deviations for stationary sequences of bounded random variables
%J Comptes Rendus. Mathématique
%D 2019
%P 463-477
%V 357
%N 5
%I Elsevier
%R 10.1016/j.crma.2019.05.003
%G en
%F CRMATH_2019__357_5_463_0
Xiequan Fan. Cramér-type moderate deviations for stationary sequences of bounded random variables. Comptes Rendus. Mathématique, Volume 357 (2019) no. 5, pp. 463-477. doi : 10.1016/j.crma.2019.05.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.05.003/

[1] C. Cuny; F. Merlevède On martingale approximations and the quenched weak invariance principle, Ann. Probab., Volume 42 (2014) no. 2, pp. 760-793

[2] A. De Acosta Moderate deviations and associated Laplace approximations for sums of independent random vectors, Trans. Amer. Math. Soc., Volume 329 (1992) no. 1, pp. 357-375

[3] J. Dedecker; F. Merlevède; M. Peligrad; S. Utev Moderate deviations for stationary sequences of bounded random variables, Ann. Inst. Henri Poincaré Probab. Stat., Volume 45 (2009) no. 2, pp. 453-476

[4] J. Dedecker; F. Merlevède; E. Rio Rates of convergence for minimal distances in the central limit theorem under projective criteria, Electron. J. Probab., Volume 14 (2009), pp. 978-1011

[5] A. Dembo Moderate deviations for martingales with bounded jumps, Electron. Commun. Probab., Volume 1 (1996), pp. 11-17

[6] H. Djellout Moderate deviations for martingale differences and applications to ϕ-mixing sequences, Stoch. Stoch. Rep., Volume 73 (2002), pp. 37-63

[7] X. Fan; I. Grama; Q. Liu Cramér large deviation expansions for martingales under Bernstein's condition, Stoch. Process. Appl., Volume 123 (2013) no. 11, pp. 3919-3942

[8] D.A. Freedman On tail probabilities for martingales, Ann. Probab., Volume 3 (1975) no. 1, pp. 100-118

[9] F.Q. Gao Moderate deviations for martingales and mixing random processes, Stoch. Process. Appl., Volume 61 (1996), pp. 263-275

[10] I. Grama On moderate deviations for martingales, Ann. Probab., Volume 25 (1997), pp. 152-184

[11] I. Grama; E. Haeusler Large deviations for martingales via Cramér's method, Stoch. Process. Appl., Volume 85 (2000), pp. 279-293

[12] I. Grama; E. Haeusler An asymptotic expansion for probabilities of moderate deviations for multivariate martingales, J. Theor. Probab., Volume 19 (2006), pp. 1-44

[13] D.A. Mason; H.H. Zhou Quantile coupling inequalities and their applications, Probab. Surv., Volume 9 (2012), pp. 439-479

[14] M. Peligrad; S. Utev; W.B. Wu A maximal Lp-inequality for stationary sequences and its applications, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 541-550

[15] A. Račkauskas On probabilities of large deviations for martingales, Liet. Mat. Rink., Volume 30 (1990), pp. 784-795

[16] A. Račkauskas Large deviations for martingales with some applications, Acta Appl. Math., Volume 38 (1995), pp. 109-129

[17] E. Rio Sur le théoreme de Berry–Esseen pour les suites faiblement dépendantes, Probab. Theory Relat. Fields, Volume 104 (1996) no. 2, pp. 255-282

[18] W.B. Wu Nonlinear system theory: another look at dependence, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 14150-14154

[19] W.B. Wu; Z. Zhao Moderate deviations for stationary processes, Stat. Sin., Volume 18 (2008), pp. 769-782

Cited by Sources:

Comments - Policy