Dans cette note, on construit un ensemble S de suites primitives telles que, pour tout nombre réel
In this note, we construct a set S of primitive sequences such that, for any real number
Accepté le :
Publié le :
Ilias Laib 1 ; Abdellah Derbal 1 ; Rachid Mechik 2
@article{CRMATH_2019__357_5_413_0, author = {Ilias Laib and Abdellah Derbal and Rachid Mechik}, title = {Somme translat\'ee sur des suites primitives et la conjecture {d'Erd\"os}}, journal = {Comptes Rendus. Math\'ematique}, pages = {413--417}, publisher = {Elsevier}, volume = {357}, number = {5}, year = {2019}, doi = {10.1016/j.crma.2019.05.005}, language = {fr}, }
TY - JOUR AU - Ilias Laib AU - Abdellah Derbal AU - Rachid Mechik TI - Somme translatée sur des suites primitives et la conjecture d'Erdös JO - Comptes Rendus. Mathématique PY - 2019 SP - 413 EP - 417 VL - 357 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2019.05.005 LA - fr ID - CRMATH_2019__357_5_413_0 ER -
Ilias Laib; Abdellah Derbal; Rachid Mechik. Somme translatée sur des suites primitives et la conjecture d'Erdös. Comptes Rendus. Mathématique, Volume 357 (2019) no. 5, pp. 413-417. doi : 10.1016/j.crma.2019.05.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.05.005/
[1] Note on sequences of integers no one of which is divisible by any other, J. Lond. Math. Soc., Volume 10 (1935), pp. 126-128
[2] Upper bound of
[3] Results and conjectures related to a conjecture of Erdős concerning primitive sequences, 25 September 2017 | arXiv
[4] A remark on Stirling's formula, Amer. Math. Mon., Volume 62 (1955), pp. 26-29
[5] Approximates formulas for some functions of prime numbers, Ill. J. Math., Volume 6 (1962), pp. 64-94
- New proof and generalization of some results on translated sums over
-almost primes, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 362 (2024), pp. 481-486 | DOI:10.5802/crmath.552 | Zbl:1555.11008 - Translated sums of quasi-primitive sequences, Periodica Mathematica Hungarica, Volume 89 (2024) no. 1, pp. 129-138 | DOI:10.1007/s10998-024-00577-2 | Zbl:7915709
- A proof of the Erdős primitive set conjecture, Forum of Mathematics, Pi, Volume 11 (2023), p. 21 (Id/No e18) | DOI:10.1017/fmp.2023.16 | Zbl:1535.11033
- Translated sums of primitive sets, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 360 (2022), pp. 409-414 | DOI:10.5802/crmath.285 | Zbl:1500.11067
- On a sum over primitive sequences of finite degree, Mathematica Montisnigri, Volume 53 (2022), p. 26 | DOI:10.20948/mathmontis-2022-53-4
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique