A group G is said to be -generated if it can be generated by an involution x and an element y of order three. For G a sporadic simple group, it was proved by the third author Woldar (1989) [26] that G is -generated if and only if . In this paper, we investigate all possible -generations of Fischer's largest sporadic simple group under the assumption that the product xy has prime order.
Un groupe G est dit -engendré s'il peut être engendré par une involution x et un élément y d'ordre trois. Pour un groupe simple sporadique G, il a été montré par le troisième auteur Woldar (1989) [26] que G est -engendré si et seulement si . Nous étudions ici toutes les -générations du plus grand groupe simple sporadique de Fischer , en supposant que le produit xy est d'ordre premier.
Accepted:
Published online:
Faryad Ali 1; Mohammed Ali Faya Ibrahim 2; Andrew Woldar 3
@article{CRMATH_2019__357_5_401_0, author = {Faryad Ali and Mohammed Ali Faya Ibrahim and Andrew Woldar}, title = {On (2,3)-generation of {Fischer's} largest sporadic simple group $ F{i}_{24}^{\phantom{\rule{0.2em}{0ex}}\prime }$}, journal = {Comptes Rendus. Math\'ematique}, pages = {401--412}, publisher = {Elsevier}, volume = {357}, number = {5}, year = {2019}, doi = {10.1016/j.crma.2019.05.004}, language = {en}, }
TY - JOUR AU - Faryad Ali AU - Mohammed Ali Faya Ibrahim AU - Andrew Woldar TI - On (2,3)-generation of Fischer's largest sporadic simple group $ F{i}_{24}^{\phantom{\rule{0.2em}{0ex}}\prime }$ JO - Comptes Rendus. Mathématique PY - 2019 SP - 401 EP - 412 VL - 357 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2019.05.004 LA - en ID - CRMATH_2019__357_5_401_0 ER -
%0 Journal Article %A Faryad Ali %A Mohammed Ali Faya Ibrahim %A Andrew Woldar %T On (2,3)-generation of Fischer's largest sporadic simple group $ F{i}_{24}^{\phantom{\rule{0.2em}{0ex}}\prime }$ %J Comptes Rendus. Mathématique %D 2019 %P 401-412 %V 357 %N 5 %I Elsevier %R 10.1016/j.crma.2019.05.004 %G en %F CRMATH_2019__357_5_401_0
Faryad Ali; Mohammed Ali Faya Ibrahim; Andrew Woldar. On (2,3)-generation of Fischer's largest sporadic simple group $ F{i}_{24}^{\phantom{\rule{0.2em}{0ex}}\prime }$. Comptes Rendus. Mathématique, Volume 357 (2019) no. 5, pp. 401-412. doi : 10.1016/j.crma.2019.05.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.05.004/
[1] On the ranks of and Ly, Discrete Appl. Math., Volume 155 (2007) no. 3, pp. 394-399
[2] On -generations for the Conway group , AIP Conf. Proc., Volume 1557 (2013), pp. 46-49
[3] On the ranks of , Quaest. Math., Volume 37 (2014) no. 4, pp. 591-600
[4] -generations for the Suzuki's sporadic simple group Suz, Appl. Math. Sci. (Ruse), Volume 8 (2014) no. 45–48, pp. 2375-2381
[5] 2-Generations of finite simple groups in , IEEE Conf. Proc. CSCI, Volume 249 (2016), pp. 1339-1344 | DOI
[6] On the simple sporadic group He generated by the generators, Bull. Malays. Math. Sci. Soc., Volume 35 (2012) no. 3, pp. 745-753
[7] Hurwitz groups: a brief survey, Bull. Amer. Math. Soc., Volume 23 (1990) no. 2, pp. 359-370
[8] The genera, reflexibility and simplicity of regular maps, J. Eur. Math. Soc., Volume 12 (2010) no. 2, pp. 343-364
[9] The symmetric genus of sporadic groups, Proc. Amer. Math. Soc., Volume 116 (1992), pp. 653-663
[10] Atlas of Finite Groups, Oxford University Press (Clarendon), Oxford, UK, 1985
[11] 2-Generation of finite simple groups and some related topics (A. Barlotti et al., eds.), Generators ans Relations in Groups and Geometry, Kluwer Academic Publishers, New York, 1991, pp. 195-233
[12] -generation of . I. Cases , Commun. Algebra, Volume 22 (1994) no. 4, pp. 1321-1347
[13] Finite groups generated by 3-transpositions. I, Invent. Math., Volume 13 (1971) no. 3, pp. 232-246
[14] -generations for the Janko group , Commun. Algebra, Volume 23 (1995) no. 12, pp. 4427-4437
[15] Topological Graph Theory, Dover, 2001
[16] Character Theory of Finite Groups, Dover, New York, 1994
[17] Beauville surfaces and groups: a survey (R. Connelly; A.I. Weiss; W. Whiteley, eds.), Rigidity and Symmetry, Fields Institute Communications, vol. 70, 2014, pp. 205-225
[18] The probability of generating a finite simple group, Geom. Dedic., Volume 56 (1995), pp. 103-113
[19] Classical groups, probabilistic methods and -generation problem, Ann. of Math. (2), Volume 144 (1996), pp. 77-125
[20] Simple groups, probabilistic methods, and the conjecture of Kantor and Lubotzky, J. Algebra, Volume 184 (1996), pp. 31-57
[21] The maximal subgroups of the Fischer groups and , Proc. Lond. Math. Soc., Volume 63 (1991) no. 3, pp. 113-164
[22] Generators of linear fractional groups, Proc. Symp. Pure Math., Volume 12 (1969), pp. 14-32
[23] On the groups generated by two operators, Bull. Amer. Math. Soc., Volume 7 (1901), pp. 424-426
[24] -generations for the Janko groups and , Nova J. Algebra Geom., Volume 2 (1993) no. 3, pp. 277-285
[25] -generations for the Fischer group , Commun. Algebra, Volume 22 (1994) no. 11, pp. 4597-4610
[26] On Hurwitz generation and genus actions of sporadic groups, Ill. J. Math., Volume 33 (1989) no. 3, pp. 416-437
[27] Representing , , and on surfaces of least genus, Commun. Algebra, Volume 18 (1990), pp. 15-86
Cited by Sources:
☆ This work was funded by the National Plan for Science, Technology and Innovation (MARRIFAH) - King Abdulaziz City for Science and Technology - Kingdom of Saudi Arabia, award number (13-MAT264-08).
Comments - Policy