[On the distance to instability of quadratic matrix polynomials]
A bisection method is developed for computing the distance to instability of quadratic matrix polynomials. The computation takes rounding errors into account.
Nous développons une méthode de type bissection pour calculer la distance à l'instabilité de polynômes matriciels quadratiques. Le calcul prend en compte les erreurs d'arrondi.
Accepted:
Published online:
Alexander Malyshev 1; Miloud Sadkane 2
@article{CRMATH_2019__357_6_571_0, author = {Alexander Malyshev and Miloud Sadkane}, title = {Sur la distance \`a l'instabilit\'e de polyn\^omes matriciels quadratiques}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--575}, publisher = {Elsevier}, volume = {357}, number = {6}, year = {2019}, doi = {10.1016/j.crma.2019.06.007}, language = {fr}, }
Alexander Malyshev; Miloud Sadkane. Sur la distance à l'instabilité de polynômes matriciels quadratiques. Comptes Rendus. Mathématique, Volume 357 (2019) no. 6, pp. 571-575. doi : 10.1016/j.crma.2019.06.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.06.007/
[1] Real and complex stability radii of polynomial matrices, Linear Algebra Appl., Volume 351–352 (2002), pp. 381-410
[2] Matrix Computations, The John Hopkins University Press, Baltimore, MD, USA, 2013
[3] An algorithm for the complete solution of quadratic eigenvalue problems, ACM Trans. Math. Softw., Volume 39 (2013)
[4] Numerical methods for palindromic eigenvalue problems: computing the anti-triangular Schur form, Numer. Linear Algebra Appl., Volume 16 (2009), pp. 63-86
[5] On the computation of the distance to quadratic matrix polynomials that are singular at some points on the unit circle, Electron. Trans. Numer. Anal., Volume 42 (2014), pp. 165-176
[6] An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., Volume 10 (1973), pp. 241-256
[7] The Symmetric Eigenvalue Problem, SIAM, Philadelphia, PA, USA, 1998
Cited by Sources:
Comments - Policy