We consider the solution to a transmission problem at a thin layer interface of thickness in a mechanical structure. We build a multi-scale expansion for that solution as , which enables to replace the thin layer with an improved boundary condition and leads to optimal estimates for the remainders. This short note presents new results when a Dirichlet condition is imposed on the internal boundary of the thin layer and is the counterpart of F. Caubet, D. Kateb, F. Le Louër, J. Elast. 136 (1) (2019) 17–53, where the Neumann case was considered.
Cette note concerne un problème de transmission dans une structure mécanique contenant une couche d'épaisseur mince . Nous construisons un développement asymptotique de la solution lorsque qui permet de remplacer la couche mince par une condition aux limites approchées et nous en déduisons des estimations d'erreurs optimales. Nous présentons de nouveaux résultats lorsqu'une condition de Dirichlet est imposée sur la frontière interne de la couche mince, tandis que le cas d'une condition de Neumann est étudié dans F. Caubet, D. Kateb, F. Le Louër, J. Elast. 136 (1) (2019) 17–53.
Accepted:
Published online:
Frédérique Le Louër 1
@article{CRMATH_2019__357_6_576_0, author = {Fr\'ed\'erique Le Lou\"er}, title = {Thin layer approximations in mechanical structures: {The} {Dirichlet} boundary condition case}, journal = {Comptes Rendus. Math\'ematique}, pages = {576--581}, publisher = {Elsevier}, volume = {357}, number = {6}, year = {2019}, doi = {10.1016/j.crma.2019.06.001}, language = {en}, }
Frédérique Le Louër. Thin layer approximations in mechanical structures: The Dirichlet boundary condition case. Comptes Rendus. Mathématique, Volume 357 (2019) no. 6, pp. 576-581. doi : 10.1016/j.crma.2019.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.06.001/
[1] Nondestructive testing of the delaminated interface between two materials, SIAM J. Appl. Math., Volume 76 (2016) no. 6, pp. 2306-2332
[2] Shape sensitivity analysis for elastic structures with generalized impedance boundary conditions of the Wentzell type – application to compliance minimization, J. Elast., Volume 136 (2019) no. 1, pp. 17-53
[3] Mathematical Elasticity. Vol. I, Three-Dimensional Elasticity, Studies in Mathematics and its Applications, vol. 20, North-Holland Publishing Co., Amsterdam, 1988
[4] A spectral scheme for the simulation of dynamic mode 3 delamination of thin films, Eng. Fract. Mech., Volume 72 (2005) no. 12, pp. 1866-1891
[5] Generalized impedance boundary conditions and shape derivatives for 3D Helmholtz problems, Math. Models Methods Appl. Sci., Volume 26 (2016) no. 10, pp. 1995-2033
[6] Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (V.D. Kupradze, ed.), North-Holland Series in Applied Mathematics and Mechanics, vol. 25, North-Holland Publishing Co., Amsterdam, 1979 (Russian edition)
[7] Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems, Applied Mathematical Sciences, vol. 144, Springer-Verlag, New York, 2001
[8] Delamination detection in composite laminates using high-frequency P- and S-waves. Part I: theory and analysis, Compos. Struct., Volume 134 (2015), pp. 1095-1108
[9] Delamination detection in laminated composites using lamb waves (E.E. Gdoutos; Z.P. Marioli-Riga, eds.), Recent Advances in Composite Materials: In Honor of S.A. Paipetis, Springer Netherlands, 2003, pp. 109-126
[10] Analyse multi-échelle et conditions aux limites approchées pour un problème avec couche mince dans un domaine à coin, Université de Rennes-1, France, 2003 (PhD thesis)
Cited by Sources:
Comments - Policy