By using a simple method based on the fractional integration by parts, we prove the existence and the Besov regularity of the density for solutions to stochastic differential equations driven by an additive Gaussian Volterra process. We assume weak regularity conditions on the drift. Several examples of Gaussian Volterra noises are discussed.
En utilisant une méthode simple basée sur l'intégration fractionnelle par parties, nous prouvons l'existence et la régularité de Besov de la densité des solutions des équations différentielles stochastiques dirigées par un bruit additif gaussien de type Volterra. Nous supposons des conditions de faible régularité sur le coefficient de dérive. Plusieurs exemples de bruits gaussiens de Volterra sont discutés.
Accepted:
Published online:
Christian Olivera 1; Ciprian A. Tudor 2, 3
@article{CRMATH_2019__357_7_636_0, author = {Christian Olivera and Ciprian A. Tudor}, title = {Existence and {Besov} regularity of the density for a class of {SDEs} with {Volterra} noise}, journal = {Comptes Rendus. Math\'ematique}, pages = {636--645}, publisher = {Elsevier}, volume = {357}, number = {7}, year = {2019}, doi = {10.1016/j.crma.2019.06.012}, language = {en}, }
TY - JOUR AU - Christian Olivera AU - Ciprian A. Tudor TI - Existence and Besov regularity of the density for a class of SDEs with Volterra noise JO - Comptes Rendus. Mathématique PY - 2019 SP - 636 EP - 645 VL - 357 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2019.06.012 LA - en ID - CRMATH_2019__357_7_636_0 ER -
Christian Olivera; Ciprian A. Tudor. Existence and Besov regularity of the density for a class of SDEs with Volterra noise. Comptes Rendus. Mathématique, Volume 357 (2019) no. 7, pp. 636-645. doi : 10.1016/j.crma.2019.06.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.06.012/
[1] Existence of densities for stable-like driven SDE's with Hölder continuous coefficients, J. Funct. Anal., Volume 264 (2013), pp. 1757-1778
[2] Existence of densities for the 3D Navier–Stokes equations driven by Gaussian noise, Probab. Theory Relat. Fields, Volume 158 (2014) no. 3–4, pp. 575-596
[3] Absolute continuity for some one—dimensional processes, Bernoulli, Volume 16 (2010) no. 2, pp. 343-360
[4] Gaussian estimates for solutions of some one-dimensional stochastic equations, Potential Anal., Volume 43 (2015) no. 2, pp. 289-311
[5] Malliavin Calculus and Related Topics, Springer, New York, 2006
[6] Regularization of differential equations by fractional noise, Stoch. Process. Appl., Volume 102 (2002), pp. 103-116
[7] Stochastic differential equations with additive fractional noise and locally unbounded drift, Prog. Probab., Volume 56 (2003), pp. 451-470
[8] A simple method for the existence of a density for stochastic evolutions with rough coefficients, Electron. J. Probab., Volume 23 (2018) (paper 113, 1–43)
[9] Absolute continuity for SPDEs with irregular fundamental solution, Electron. Commun. Probab., Volume 20 (2015) no. 14
[10] Non elliptic SPDEs and ambit fields: existence of densities (F. Benth; G. Di Nunno, eds.), Stochastics of Environmental and Financial Economics, Springer, Proceedings in Mathematics Statistics, vol. 138, Springer, Cham, Switzerland, 2016
[11] Theory of Function Spaces, Monographs in Mathematics, vol. 78, Birkhauser Verlag, Basel, Switzerland, 1983
[12] On strong solutions and explicit formulas for solutions of stochastic integral equations, Math. USSR Sb., Volume 39 (1981), pp. 387-403
[13] A transformation of the phase space of a diffusion process that removes the drift, Math. USSR Sb., Volume 22 (1974), pp. 129-149
Cited by Sources:
Comments - Policy