[Diagrammes de classes du groupe modulaire et fractions continues]
Le diagramme des classes de chaque orbite de l'action du groupe modulaire sur contient un circuit . Dans cette Note, pour tout , le chemin menant au circuit et le circuit lui-même sont décrits en termes de fractions continues. Nous montrons que la structure des fractions continues des nombres quadratiques irrationnels réduits est liée à la structure ou au type du circuit. Les trois types de circuits de l'action de sur sont également reliés à la structure des fractions continues. L'action du groupe modulaire sur est choisie précisément, car un de ses circuits est lié au fait que les rapports des nombres de Fibonacci sont les convergents de la fraction continue du nombre d'or.
The coset diagram for each orbit under the action of the modular group on contains a circuit . For any , the path leading to the circuit and the circuit itself are obtained through continued fractions in this paper. We show that the structure of the continued fractions of a reduced quadratic irrational element is weaved with the structure or type of the circuit. The three types of circuits of the action of on are also interconnected with the structure of continued fractions. The action of the modular group on is chosen specifically because a circuit of it is related to the ratio of the Fibonacci numbers being the solution to the continued fractions of the golden ratio.
Accepté le :
Publié le :
Ayesha Rafiq 1 ; Qaiser Mushtaq 2
@article{CRMATH_2019__357_8_655_0, author = {Ayesha Rafiq and Qaiser Mushtaq}, title = {Coset diagrams of the modular group and continued fractions}, journal = {Comptes Rendus. Math\'ematique}, pages = {655--663}, publisher = {Elsevier}, volume = {357}, number = {8}, year = {2019}, doi = {10.1016/j.crma.2019.07.002}, language = {en}, }
Ayesha Rafiq; Qaiser Mushtaq. Coset diagrams of the modular group and continued fractions. Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 655-663. doi : 10.1016/j.crma.2019.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.07.002/
[1] The modular symbol and continued fractions in higher dimensions, Invent. Math., Volume 55 (1979) no. 3, pp. 241-250
[2] The Higher Arithmetic: An Introduction to the Theory of Numbers, Cambridge University Press, Cambridge, UK, 1999
[3] A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J., Volume 21 (1954) no. 3, pp. 549-563
[4] Continued fractions and matrices, Amer. Math. Mon., Volume 56 (1949), pp. 98-103
[5] An Introduction to the Theory of Numbers, Oxford University Press, 1938
[6] Coset diagrams and relations for , Arab Gulf J. Sci. Res., Volume 1 (1983) no. 1, pp. 159-164
[7] On ambiguous numbers of an invariant subset of under the action of the modular group , Studia Sci. Math. Hung., Volume 42 (2005) no. 4, pp. 401-412
[8] Real quadratic irrational numbers and modular group action, Southeast Asian Bull. Math., Volume 35 (2011), pp. 439-445
[9] Continued fractions, modular symbols, and noncommutative geometry, Sel. Math. New Ser., Volume 8 (2002) no. 3, pp. 475-521
[10] Modular group acting on real quadratic fields, Bull. Aust. Math. Soc., Volume 37 (1988), pp. 303-309
[11] Alternating groups as quotients of two generators groups, Adv. Math., Volume 96 (1992) no. 1, pp. 113-121
[12] On word structure of the modular group over finite and real quadratic fields, Discrete Math., Volume 178 (1998), pp. 155-164
[13] Behavior of the ring class numbers of a real quadratic field, Ars Comb., Volume 113 (2014), pp. 257-271
[14] Algebraic Theory of Numbers, Éditions Hermann, Paris, France, 1970
[15] The modular surface and continued fractions, J. Lond. Math. Soc., Volume 31 (1985) no. 2, pp. 69-80
[16] An Introduction to Number Theory, MIT Press, 1978
[17] An introduction to continued fractions, Diophantine Analysis, LMS Lecture Notes in Math., vol. 109, Cambridge University Press, 1986, pp. 99-138
Cité par Sources :
☆ This work was presented at the 13th International Pure Mathematics Conference 2012, Islamabad, Pakistan.
Commentaires - Politique