[Une inégalité centro-projective]
Nous présentons une nouvelle formule pour l'aire centro-projective d'un corps convexe. Cette aire a été préalablement définie par Berck–Bernig–Vernicos. Nous utilisons cette formule pour montrer qu'elle est majorée par l'aire centro-projective d'une ellipse, l'égalité caractérisant les ellipsoïdes.
We give a new integral formula for the centro-projective area of a convex body, which was first defined by Berck–Bernig–Vernicos. We then use the formula to prove that it is bounded from above by the centro-projective area of an ellipsoid and that equality occurs if and only if the convex set is an ellipsoid.
Accepté le :
Publié le :
Constantin Vernicos 1 ; Deane Yang 2
@article{CRMATH_2019__357_8_681_0, author = {Constantin Vernicos and Deane Yang}, title = {A centro-projective inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {681--685}, publisher = {Elsevier}, volume = {357}, number = {8}, year = {2019}, doi = {10.1016/j.crma.2019.07.005}, language = {en}, }
Constantin Vernicos; Deane Yang. A centro-projective inequality. Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 681-685. doi : 10.1016/j.crma.2019.07.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.07.005/
[1] Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningr. State Univ. Ann. [Uč. Zap.] Math. Ser., Volume 6 (1939), pp. 3-35 MR MR0003051 (2,155a)
[2] Volume entropy of Hilbert geometries, Pac. J. Math., Volume 245 (2010) no. 2, pp. 201-225 MR 2608435 (2011c:51008)
[3] Convexe and Discrete Geometry, Springer, 2007
[4] Contributions to affine surface area, Manuscr. Math., Volume 91 (1996) no. 3, pp. 283-301 MR 1416712 (98d:52009)
[5] Curvature relations and affine surface area for a general convex body and its polar, Results Math., Volume 29 (1996) no. 3–4, pp. 233-248 MR 1387565 (97c:52004)
[6] Zur Affinoberfläche konvexer Körper, Manuscr. Math., Volume 56 (1986) no. 4, pp. 429-464
[7] General affine surface areas, Adv. Math., Volume 224 (2010) no. 6, pp. 2346-2360
[8] Extended affine surface area, Adv. Math., Volume 85 (1991) no. 1, pp. 39-68
[9] Selected affine isoperimetric inequalities, Handbook of Convex Geometry, vols. A, B, North-Holland, Amsterdam, 1993, pp. 151-176 MR 1242979 (94h:52014)
[10] Affine isoperimetric problems, New York, 1982 (Ann. New York Acad. Sci.), Volume vol. 440 (1985), pp. 113-127 MR 809198 (87a:52014)
[11] An affine invariant for convex bodies of n-dimensional space, Port. Math., Volume 8 (1949), pp. 155-161 MR 0039293 (12,526f)
[12] Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, Cambridge, UK, 2014
[13] Minkowski Geometry, Cambridge University Press, Cambridge, UK, 1996
[14] Affine integral geometry from a differentiable viewpoint (L. Ji; P. Li; R. Schoen; L. Simon, eds.), Handbook of Geometric Analysis, No. 2, Advanced Lectures in Mathematics, vol. 13, Int. Press, Somerville, MA, USA, 2010, pp. 359-390 MR 2743445 (2011m:52016)
Cité par Sources :
Commentaires - Politique