[Viscosité artificielle non linéaire pour la méthode des éléments spectraux]
Nous présentons une approche basée sur les filtres pour calculer les viscosités artificielles pour la méthode des éléments spectraux. Cette procédure est simple et est mise en œuvre sur un grand nombre d'exemples.
We present a filter-based approach to computing artificial viscosities for spectral element methods. A number of applications for this approach are presented.
Accepté le :
Publié le :
Li Lu 1 ; Murtazo Nazarov 2 ; Paul Fischer 1
@article{CRMATH_2019__357_7_646_0, author = {Li Lu and Murtazo Nazarov and Paul Fischer}, title = {Nonlinear artificial viscosity for spectral element methods}, journal = {Comptes Rendus. Math\'ematique}, pages = {646--654}, publisher = {Elsevier}, volume = {357}, number = {7}, year = {2019}, doi = {10.1016/j.crma.2019.07.006}, language = {en}, }
Li Lu; Murtazo Nazarov; Paul Fischer. Nonlinear artificial viscosity for spectral element methods. Comptes Rendus. Mathématique, Volume 357 (2019) no. 7, pp. 646-654. doi : 10.1016/j.crma.2019.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.07.006/
[1] Argonne National Laboratory, IL, USA, Nek5000.
[2] High-Order Methods for Incompressible Fluid Flow, Cambridge University Press, Cambridge, UK, 2002
[3] Filter-based stabilization of spectral element methods, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2001) no. 3, pp. 265-270
[4] Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., Volume 230 (2011) no. 11, pp. 4248-4267
[5] Spectral vanishing viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., Volume 39 (2001) no. 4, pp. 1254-1268
[6] Legendre pseudospectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., Volume 30 (1993) no. 2, pp. 321-342
[7] Stabilization of the spectral element method in convection dominated flows by recovery of skew-symmetry, J. Sci. Comput., Volume 57 (2013) no. 2, pp. 254-277
[8] A continuous/discontinuous Galerkin solution of the shallow water equations with dynamic viscosity, high-order wetting and drying, and implicit time integration, 2016 (arXiv preprint) | arXiv
[9] Convergence of a residual based artificial viscosity finite element method, Comput. Math. Appl., Volume 65 (2013) no. 4, pp. 616-626
[10] Numerical investigation of a viscous regularization of the Euler equations by entropy viscosity, Comput. Methods Appl. Mech. Eng., Volume 317 (2017), pp. 128-152
[11] A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., Volume 54 (1984) no. 3, pp. 468-488
[12] Sub-cell shock capturing for discontinuous Galerkin methods, Reno, NV, USA, 9–12 January (2006), p. 112 | DOI
Cité par Sources :
Commentaires - Politique