Let be the del Pezzo 3-fold defined by the 6-dimensional linear section of the Grassmannian variety under the Plücker embedding. In this paper, we present an explicit birational relation of compactifications of degree-two rational curves (i.e. conics) in . By a product, we obtain the virtual Poincaré polynomial of compactified moduli spaces.
Soit le del Pezzo 3 défini par la section linéaire de dimension 6 de la variété grassmannienne située sous l'enrobage de Plücker. Dans cet article, nous présentons une relation birationnelle explicite de compactifications de courbes rationnelles de degré deux en . Au moyen d'un produit, nous obtenons le polynôme de Poincaré virtuel des espaces de modules compactifiés.
Accepted:
Published online:
Kiryong Chung 1; Sang-Bum Yoo 2
@article{CRMATH_2019__357_9_729_0, author = {Kiryong Chung and Sang-Bum Yoo}, title = {Compactifications of conic spaces in del {Pezzo} 3-fold}, journal = {Comptes Rendus. Math\'ematique}, pages = {729--736}, publisher = {Elsevier}, volume = {357}, number = {9}, year = {2019}, doi = {10.1016/j.crma.2019.09.003}, language = {en}, }
Kiryong Chung; Sang-Bum Yoo. Compactifications of conic spaces in del Pezzo 3-fold. Comptes Rendus. Mathématique, Volume 357 (2019) no. 9, pp. 729-736. doi : 10.1016/j.crma.2019.09.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.09.003/
[1] Complete moduli spaces of branchvarieties, J. Reine Angew. Math., Volume 639 (2010), pp. 39-71
[2] Higher rank stable pairs on k3 surfaces, Commun. Number Theory Phys., Volume 6 (2012) no. 4, pp. 805-847
[3] A desingularization of Kontsevich's compactification of twisted cubics in , 2019 | arXiv
[4] Compactified moduli spaces of rational curves in projective homogeneous varieties, J. Math. Soc. Jpn., Volume 64 (2012) no. 4, pp. 1211-1248
[5] Geometry of moduli spaces of rational curves in linear sections of Grassmannian , J. Pure Appl. Algebra, Volume 222 (2018) no. 4, pp. 868-888
[6] Hilbert scheme of rational cubic curves via stable maps, Amer. J. Math., Volume 133 (2011) no. 3, pp. 797-834
[7] Mori's program for the moduli space of conics in Grassmannian, Taiwan. J. Math., Volume 21 (June 2017) no. 3, pp. 621-652
[8] Bundles over the Fano threefold , Commun. Algebra, Volume 33 (2005) no. 9, pp. 3061-3080
[9] Notes on stable maps and quantum cohomology, Algebraic Geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, USA, 1997, pp. 45-96
[10] The family of lines on the Fano threefold , Nagoya Math. J., Volume 116 (1989), pp. 111-122
[11] Macaulay2, a software system for research in algebraic geometry http://www.math.uiuc.edu/Macaulay2/ (available at)
[12] Stable reflexive sheaves, Math. Ann., Volume 254 (1980), pp. 121-176
[13] The Geometry of Moduli Spaces of Sheaves, Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 2010
[14] The Fano surface of the Gushel threefold, Compos. Math., Volume 94 (1994) no. 1, pp. 81-107
[15] Hecke correspondence, stable maps, and the Kirwan desingularization, Duke Math. J., Volume 136 (2007) no. 3, pp. 585-618
[16] The connectedness of the moduli space of maps to homogeneous spaces, Seoul, 2000, World Sci. Publ., River Edge, NJ, USA (2001), pp. 187-201
[17] Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc., Volume 11 (1998) no. 1, pp. 119-174
[18] Birational Geometry of Moduli Spaces of Curves of Genus Zero, Seoul National University, 2011 (PhD thesis)
[19] Hodge polynomials of the moduli spaces of rank 3 pairs, Geom. Dedic., Volume 136 (2008), pp. 17-46
[20] An elementary GIT construction of the moduli space of stable maps, Ill. J. Math., Volume 51 (2007) no. 3, pp. 1003-1025
[21] Rational Curves and Instantons on the Fano Threefold , 2014 (PhD thesis)
[22] Geometric invariant theory and flips, J. Amer. Math. Soc., Volume 9 (1996) no. 3, pp. 691-723
Cited by Sources:
Comments - Policy