In this paper, we present two characterizations of the sequences of Kummer hypergeometric polynomials and Kummer hypergeometric polynomials of the second kind , which are respectively defined by the exponential generating functions:
First we construct Gauss–Weierstrass-type convolution operators with a well-chosen kernel (density) function for each sequence of Kummer hypergeometric polynomials and for Kummer hypergeometric polynomials of the second kind. Then we characterize Kummer hypergeometric polynomials as the only Appell polynomials having a weighted-integral mean equal to zero. Our approach is inspired by the Gauss–Weierstrass convolution transform for Hermite polynomials and the Kummer integral representation for confluent hypergeometric functions.
Dans cet article, nous présentons deux caractérisations des suites et de polynômes hypergéométriques de type Kummer définies par leurs fonctions génératrices :
Premièrement, nous construisons des opérateurs de convolution du type Gauss–Weierstrass pour chacune des suites de polynômes de Kummer de première et de seconde espèces. Deuxièmement, nous caractérisons les polynômes hypergéométriques de Kummer comme étant les seuls polynômes ayant une moyenne intégrale pondérée égale à zero. Cette approche nous a été inspirée par la transformation de Gauss–Weierstrass pour les polynômes de Hermite et par la représentation intégrale de type Euler–Kummer pour les fonctions hypergéométriques.
Accepted:
Published online:
Driss Drissi 1
@article{CRMATH_2019__357_10_743_0, author = {Driss Drissi}, title = {Characterization of {Kummer} hypergeometric {Bernoulli} polynomials and applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {743--751}, publisher = {Elsevier}, volume = {357}, number = {10}, year = {2019}, doi = {10.1016/j.crma.2019.10.004}, language = {en}, }
Driss Drissi. Characterization of Kummer hypergeometric Bernoulli polynomials and applications. Comptes Rendus. Mathématique, Volume 357 (2019) no. 10, pp. 743-751. doi : 10.1016/j.crma.2019.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.10.004/
[1] Handbook of Mathematical Functions with Formulae, Dover, New York, 1972
[2] Sur une classe de polynômes, Ann. Éc. Norm. Supér. (2), Volume 9 (1882), pp. 119-144
[3] Sur l'équation et la théorie de la chaleur, J. Math. Pures Appl. (4), Volume 8 (1892), pp. 187-216
[4] Du Calcul des Dérivations, LeVrault Frères, Strasbourg, 1800
[5] Coulomb functions (Negative Energies), Comput. Phys. Commun., Volume 20 (1980), pp. 447-458
[6] Application of high-precision computing for pricing arithmetic Asian options, Genoa, Italy, 9–12 July 2006, ACM, New York (2006), pp. 39-46
[7] The Staudt–Clausen theorem, Math. Mag., Volume 34 (1960–1961), pp. 131-146
[8] Advanced Combinatorics, Reidel Publishing Co, Boston, MA, USA, 1974
[9] A determinantal approach to Appell polynomials, J. Comput. Appl. Math., Volume 234 (2010), pp. 1528-1542
[10] A unified presentation of three families of generalized Apostol-type polynomials based upon the theory of umbrel calculus and the umbrel algebra, J. Number Theory, Volume 133 (2013), pp. 3245-3263
[11] Arithmetic Properties of Bernoulli-Padé Numbers and Polynomials, J. Number Theory, Volume 92 (2002), pp. 330-347
[12] Bernoulli numbers and confluent hypergeometric functions, Urbana-Champaign, IL, USA, 2000 (B. Berndt; M.A. Bennett; N. Boston; H.G. Diamond; A.J. Hildebrand; W. Philipp, eds.), A.K. Peters, Natick, MA, USA (2002), pp. 343-363
[13] A new property of complex Kummer function and its application to waveguide propagation, IEEE Antennas Wirel. Propag. Lett., Volume 2 (2003), pp. 306-309
[14] The Kummer confluent hypergeometric function and some of its applications in the theory of azimuthally magnetized circular ferrite waveguides, J. Telecommun. Inf. Technol., Volume 3 (2005), pp. 112-128
[15] Hypergeometric Zeta Functions, Int. J. Number Theory, Volume 6 (2010) no. 1, pp. 99-126
[16] Notes on linear transformations II Analyticity of semi-groups, Ann. of Math. (2), Volume 40 (1939), pp. 1-47
[17] Some sequences of rational numbers related to the exponential function, Duke Math. J., Volume 34 (1967), pp. 701-716
[18] Numbers Generated by the Reciprocal of , Math. Comput., Volume 31 (1977) no. 138, pp. 581-598
[19] Infinite Sequences and Series, Dover, New York, USA, 1956
[20] A new approach to Bernoulli polynomials, Amer. Math. Mon., Volume 95 (1988), pp. 905-911
[21] Derivatives of composite functions, Bull. Amer. Math. Soc., Volume 52 (1946), pp. 664-667
[22]
, Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften zu Berlin (1885), pp. 633-639 (789–805)Cited by Sources:
Comments - Policy