Comptes Rendus
Algebra
On complexity of representations of quivers
[Sur la complexité des représentations de carquois]
Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 841-845.

Nous montrons qu'étant donné une représentation de carquois sur un corps fini, on peut vérifier en temps polynomial si elle est absolument indécomposable.

It is shown that, given a representation of a quiver over a finite field, one can check in polynomial time whether it is absolutely indecomposable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.10.013

Victor G. Kac 1

1 Department of Mathematics, M.I.T, Cambridge, MA 02139, USA
@article{CRMATH_2019__357_11-12_841_0,
     author = {Victor G. Kac},
     title = {On complexity of representations of quivers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {841--845},
     publisher = {Elsevier},
     volume = {357},
     number = {11-12},
     year = {2019},
     doi = {10.1016/j.crma.2019.10.013},
     language = {en},
}
TY  - JOUR
AU  - Victor G. Kac
TI  - On complexity of representations of quivers
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 841
EP  - 845
VL  - 357
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2019.10.013
LA  - en
ID  - CRMATH_2019__357_11-12_841_0
ER  - 
%0 Journal Article
%A Victor G. Kac
%T On complexity of representations of quivers
%J Comptes Rendus. Mathématique
%D 2019
%P 841-845
%V 357
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2019.10.013
%G en
%F CRMATH_2019__357_11-12_841_0
Victor G. Kac. On complexity of representations of quivers. Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 841-845. doi : 10.1016/j.crma.2019.10.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.10.013/

[1] I.N. Bernstein; I.M. Gelfand; V.A. Ponomarev Coxeter functors and Gabriel's theorem, Usp. Mat. Nauk, Volume 28 (1973), pp. 17-32

[2] W. Crawley-Boevey; M. Van den Bergh Absolutely indecomposable representations and Kac-Moody Lie algebras, Invent. Math., Volume 155 (2004) no. 3, pp. 537-559 (with an appendix by Hiraku Nakajima)

[3] P.W. Donovan; M.R. Freislich The Representation Theory of Finite Graphs and Associated Algebras, Carleton Math. Lecture Notes, vol. 5, Carleton University, Ottawa, Ontario, Canada, 1973

[4] P. Gabriel Unzerlegbare Darstellungen. I, Manuscr. Math., Volume 6 (1972), pp. 71-103 (in German, with English summary); correction: Manuscr. Math., 6, 1972, pp. 309

[5] T. Hausel Kac's conjecture from Nakajima quiver varieties, Invent. Math., Volume 181 (2010) no. 1, pp. 21-37

[6] T. Hausel; E. Letellier; F. Rodriguez-Villegas Positivity for Kac polynomials and DT-invariants of quivers, Ann. of Math. (2), Volume 177 (2013) no. 3, pp. 1147-1168

[7] V.G. Kac Infinite root systems, representations of graphs and invariant theory, Invent. Math., Volume 56 (1980) no. 1, pp. 57-92

[8] V.G. Kac Infinite root systems, representations of graphs and invariant theory II, J. Algebra, Volume 78 (1982), pp. 141-162

[9] V.G. Kac Root systems, representations of quivers and invariant theory, Montecatini, 1982 (Lecture Notes in Math.), Volume vol. 996, Springer, Berlin (1983), pp. 74-108

[10] V.G. Kac Infinite-Dimensional Lie Algebras, Cambridge University Press, Cambridge, UK, 1990

[11] L.A. Nazarova Representations of quivers of infinite type, Math. USSR Izv., Ser. Mat., Volume 7 (1973), pp. 752-791

Cité par Sources :

Commentaires - Politique