[Sur les variétés carquois et grassmannienes affines de type A]
We construct Nakajima's quiver varieties of type A in terms of affine Grassmannians of type A. This gives a compactification of quiver varieties and a decomposition of affine Grassmannians into a disjoint union of quiver varieties. Consequently, singularities of quiver varieties, nilpotent orbits and affine Grassmannians are the same in type A. The construction also provides a geometric framework for skew (GL(m),GL(n)) duality and identifies the natural basis of weight spaces in Nakajima's construction with the natural basis of multiplicity spaces in tensor products which arises from affine Grassmannians.
Nous construisons les variétés carquois de Nakajima de type A en termes de Grassmanniennes affines de type A. Ceci fournit une compactification de ces variétés carquois et une décomposition de ces Grassmanniennes affines en une union disjointe de variétés carquois. En conséquence, les singularités des variétés carquois, des orbites nilpotentes et des Grassmanniennes affines sont les mêmes en type A. La construction fournit aussi un cadre géométrique pour la dualité (GL(m),GL(n)) extérieure et permet d'identifier la base naturelle des espaces de poids dans la construction de Nakajima avec la base naturelle des espaces de multiplicité des produits tensoriels dans la construction géométrique en termes de Grassmanienne affine.
Accepté le :
Publié le :
Ivan Mirković 1 ; Maxim Vybornov 2
@article{CRMATH_2003__336_3_207_0, author = {Ivan Mirkovi\'c and Maxim Vybornov}, title = {On quiver varieties and affine {Grassmannians} of type {\protect\emph{A}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {207--212}, publisher = {Elsevier}, volume = {336}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00022-0}, language = {en}, }
Ivan Mirković; Maxim Vybornov. On quiver varieties and affine Grassmannians of type A. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 207-212. doi : 10.1016/S1631-073X(03)00022-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00022-0/
[1] V. Baranovsky, V. Ginzburg, A. Kuznetsov, Wilson's Grassmannian and a noncommutative quadric, Preprint, 2002, | arXiv
[2] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, Preprint
[3] Representation Theory and Complex Geometry, Birkhäuser, Boston, 1997
[4] Lagrangian construction of the enveloping algebra U(sln), C. R. Acad. Sci. Paris Sér. I Math., Volume 312 (1991) no. 12, pp. 907-912
[5] V. Ginzburg, Perverse sheaves on a loop group and Langlands duality, Preprint, 1995, | arXiv
[6] Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur Lectures, Israel Math. Conf. Proc., 8, Tel Aviv, Bar-Ilan University, Ramat Gan, 1992, 1995, pp. 1-182
[7] Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math. (2), Volume 74 (1961), pp. 329-387
[8] Green polynomials and singularities of unipotent classes, Adv. Math., Volume 42 (1981) no. 2, pp. 169-178
[9] On quiver varieties, Adv. Math., Volume 136 (1998), pp. 141-182
[10] A. Maffei, Quiver varieties of type A, Preprint, 2000, | arXiv
[11] Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett., Volume 7 (2000) no. 1, pp. 13-24
[12] Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras, Duke Math. J., Volume 76 (1994) no. 2, pp. 365-416
[13] Quiver varieties and Kac–Moody algebras, Duke Math. J., Volume 91 (1998) no. 3, pp. 515-560
[14] Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math., 815, Springer, Berlin, 1980
[15] Collisions of Calogero–Moser particles and an adelic Grassmannian. With an appendix by I.G. Macdonald, Invent. Math., Volume 133 (1998) no. 1, pp. 1-41
- Communications in Mathematical Physics, 406 (2025) no. 6, p. 108 (Id/No 122) | DOI:10.1007/s00220-025-05277-7 | Zbl:8038216
- Modular representations in type
with a two-row nilpotent central character, Journal of Algebra, Volume 643 (2024), pp. 311-339 | DOI:10.1016/j.jalgebra.2024.01.002 | Zbl:1552.20034 - Reduction by stages for finite
-algebras, Mathematische Zeitschrift, Volume 308 (2024) no. 1, p. 36 (Id/No 15) | DOI:10.1007/s00209-024-03567-9 | Zbl:1554.17007 - Stable envelopes for slices of the affine Grassmannian, Selecta Mathematica. New Series, Volume 30 (2024) no. 4, p. 77 (Id/No 73) | DOI:10.1007/s00029-024-00953-3 | Zbl:1554.55006
- Towards geometric Satake correspondence for Kac-Moody algebras, Cherkis bow varieties and affine Lie algebras of type
, Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, Volume 56 (2023) no. 6, pp. 1777-1824 | DOI:10.24033/asens.2567 | Zbl:1551.17028 - 3D TQFT and HOMFLYPT homology, Letters in Mathematical Physics, Volume 113 (2023) no. 3, p. 62 (Id/No 71) | DOI:10.1007/s11005-023-01684-w | Zbl:1540.57045
- Branes, quivers, and the affine Grassmannian, McKay correspondence, mutation and related topics. Proceedings of the conference on McKay correspondence, mutation and related topics, Tokyo, Japan, July 17 – August 14, 2020, Tokyo: Mathematical Society of Japan, 2023, pp. 331-436 | DOI:10.2969/aspm/08810331 | Zbl:1517.81082
- Hamiltonian reduction for affine Grassmannian slices and truncated shifted Yangians, Advances in Mathematics, Volume 399 (2022), p. 52 (Id/No 108281) | DOI:10.1016/j.aim.2022.108281 | Zbl:1484.14095
- Comparison of quiver varieties, loop Grassmannians and nilpotent cones in type
(with an appendix by Vasily Krylov), Advances in Mathematics, Volume 407 (2022), p. 54 (Id/No 108397) | DOI:10.1016/j.aim.2022.108397 | Zbl:1497.14096 - Symplectic resolutions, symplectic duality, and Coulomb branches, Bulletin of the London Mathematical Society, Volume 54 (2022) no. 5, pp. 1515-1551 | DOI:10.1112/blms.12711 | Zbl:1531.16013
- On supersymmetric interface defects, brane parallel transport, order-disorder transition and homological mirror symmetry, Journal of High Energy Physics, Volume 2022 (2022) no. 10, p. 138 (Id/No 76) | DOI:10.1007/jhep10(2022)076 | Zbl:1534.81114
- Journal of High Energy Physics, 2022 (2022) no. 3, p. 62 (Id/No 73) | DOI:10.1007/jhep03(2022)073 | Zbl:1522.81659
- Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties, Representation Theory, Volume 26 (2022), pp. 585-615 | DOI:10.1090/ert/613 | Zbl:1497.14094
- Beilinson-Drinfeld Schubert varieties and global Demazure modules, Forum of Mathematics, Sigma, Volume 9 (2021), p. 25 (Id/No e42) | DOI:10.1017/fms.2021.36 | Zbl:1469.14102
- Euler numbers of Hilbert schemes of points on simple surface singularities and quantum dimensions of standard modules of quantum affine algebras, Kyoto Journal of Mathematics, Volume 61 (2021) no. 2, pp. 377-397 | DOI:10.1215/21562261-2021-0006 | Zbl:1467.14011
- Exotic t-structures and actions of quantum affine algebras, Journal of the European Mathematical Society (JEMS), Volume 22 (2020) no. 10, pp. 3263-3304 | DOI:10.4171/jems/986 | Zbl:1471.14038
- A quantum Mirković-Vybornov isomorphism, Representation Theory, Volume 24 (2020), pp. 38-84 | DOI:10.1090/ert/536 | Zbl:1496.17013
- Cotangent bundles of partial flag varieties and conormal varieties of their Schubert divisors, Transformation Groups, Volume 25 (2020) no. 1, pp. 127-148 | DOI:10.1007/s00031-019-09523-w | Zbl:1472.14053
- Introduction to quiver varieties, Two algebraic byways from differential equations: Gröbner bases and quivers, Cham: Springer, 2020, pp. 231-270 | DOI:10.1007/978-3-030-26454-3_7 | Zbl:1455.16012
- Cotangent bundle to the flag variety. I, Transformation Groups, Volume 24 (2019) no. 1, pp. 127-147 | DOI:10.1007/s00031-017-9466-1 | Zbl:1419.14074
- Involutions on the affine Grassmannian and moduli spaces of principal bundles, Bulletin of the Institute of Mathematics. Academia Sinica. New Series, Volume 13 (2018) no. 1, pp. 43-97 | DOI:10.21915/bimas.2018103 | Zbl:1423.14250
- Quantum K-theoretic geometric Satake: the
case, Compositio Mathematica, Volume 154 (2018) no. 2, pp. 275-327 | DOI:10.1112/s0010437x17007564 | Zbl:1433.17014 - Categorical geometric symmetric Howe duality, Selecta Mathematica. New Series, Volume 24 (2018) no. 2, pp. 1593-1631 | DOI:10.1007/s00029-017-0362-2 | Zbl:1423.14119
- The Coulomb branch of 3d
theories, Communications in Mathematical Physics, Volume 354 (2017) no. 2, pp. 671-751 | DOI:10.1007/s00220-017-2903-0 | Zbl:1379.81072 - On generalized category
for a quiver variety, Mathematische Annalen, Volume 368 (2017) no. 1-2, pp. 483-536 | DOI:10.1007/s00208-016-1438-6 | Zbl:1419.17015 - Cotangent bundle to the Grassmann variety, Transformation Groups, Volume 21 (2016) no. 2, pp. 519-530 | DOI:10.1007/s00031-015-9356-3 | Zbl:1390.14148
- Clasp technology to knot homology via the affine Grassmannian, Mathematische Annalen, Volume 363 (2015) no. 3-4, pp. 1053-1115 | DOI:10.1007/s00208-015-1196-x | Zbl:1356.57013
- Geometric Satake, Springer correspondence, and small representations. II, Representation Theory, Volume 19 (2015), pp. 94-166 | DOI:10.1090/ert/465 | Zbl:1407.17008
- Quiver varieties and the quantum Knizhnik-Zamolodchikov equation, Theoretical and Mathematical Physics, Volume 185 (2015) no. 3, pp. 1741-1758 | DOI:10.1007/s11232-015-0376-x | Zbl:1338.81229
- Diagram automorphisms of quiver varieties, Advances in Mathematics, Volume 267 (2014), pp. 225-276 | DOI:10.1016/j.aim.2014.08.007 | Zbl:1308.17009
- Cyclic sieving, rotation, and geometric representation theory, Selecta Mathematica. New Series, Volume 20 (2014) no. 2, pp. 609-625 | DOI:10.1007/s00029-013-0144-4 | Zbl:1295.22018
- A geometric Schur functor., Selecta Mathematica. New Series, Volume 20 (2014) no. 4, pp. 961-977 | DOI:10.1007/s00029-014-0147-9 | Zbl:1331.20061
- Isomorphisms of quantizations via quantization of resolutions, Advances in Mathematics, Volume 231 (2012) no. 3-4, pp. 1216-1270 | DOI:10.1016/j.aim.2012.06.017 | Zbl:1282.53070
- Pursuing the double affine Grassmannian. I: Transversal slices via instantons on
-singularities, Duke Mathematical Journal, Volume 152 (2010) no. 2, pp. 175-206 | DOI:10.1215/00127094-2010-011 | Zbl:1200.14083 - Coherent sheaves and categorical
actions, Duke Mathematical Journal, Volume 154 (2010) no. 1, pp. 135-179 | DOI:10.1215/00127094-2010-035 | Zbl:1228.14011 - Categorical geometric skew Howe duality, Inventiones Mathematicae, Volume 180 (2010) no. 1, pp. 111-159 | DOI:10.1007/s00222-009-0227-1 | Zbl:1254.17013
- Knot homology via derived categories of coherent sheaves. II:
case, Inventiones Mathematicae, Volume 174 (2008) no. 1, pp. 165-232 | DOI:10.1007/s00222-008-0138-6 | Zbl:1298.57007 - Quiver varieties and Lusztig's algebra., Advances in Mathematics, Volume 203 (2006) no. 2, pp. 514-536 | DOI:10.1016/j.aim.2005.05.002 | Zbl:1120.16015
- The minimal degeneration singularities in the affine Grassmannians, Duke Mathematical Journal, Volume 126 (2005) no. 2, pp. 233-249 | DOI:10.1215/s0012-7094-04-12622-3 | Zbl:1078.14016
Cité par 39 documents. Sources : zbMATH
Commentaires - Politique