Comptes Rendus
Group Theory
On quiver varieties and affine Grassmannians of type A
[Sur les variétés carquois et grassmannienes affines de type A]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 207-212.

We construct Nakajima's quiver varieties of type A in terms of affine Grassmannians of type A. This gives a compactification of quiver varieties and a decomposition of affine Grassmannians into a disjoint union of quiver varieties. Consequently, singularities of quiver varieties, nilpotent orbits and affine Grassmannians are the same in type A. The construction also provides a geometric framework for skew (GL(m),GL(n)) duality and identifies the natural basis of weight spaces in Nakajima's construction with the natural basis of multiplicity spaces in tensor products which arises from affine Grassmannians.

Nous construisons les variétés carquois de Nakajima de type A en termes de Grassmanniennes affines de type A. Ceci fournit une compactification de ces variétés carquois et une décomposition de ces Grassmanniennes affines en une union disjointe de variétés carquois. En conséquence, les singularités des variétés carquois, des orbites nilpotentes et des Grassmanniennes affines sont les mêmes en type A. La construction fournit aussi un cadre géométrique pour la dualité (GL(m),GL(n)) extérieure et permet d'identifier la base naturelle des espaces de poids dans la construction de Nakajima avec la base naturelle des espaces de multiplicité des produits tensoriels dans la construction géométrique en termes de Grassmanienne affine.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00022-0

Ivan Mirković 1 ; Maxim Vybornov 2

1 Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA 01003-4515, USA
2 Department of Mathematics, MIT, 77 Massachusetts Ave, Cambridge, MA 02139-4307, USA
@article{CRMATH_2003__336_3_207_0,
     author = {Ivan Mirkovi\'c and Maxim Vybornov},
     title = {On quiver varieties and affine {Grassmannians} of type {\protect\emph{A}}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {207--212},
     publisher = {Elsevier},
     volume = {336},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00022-0},
     language = {en},
}
TY  - JOUR
AU  - Ivan Mirković
AU  - Maxim Vybornov
TI  - On quiver varieties and affine Grassmannians of type A
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 207
EP  - 212
VL  - 336
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00022-0
LA  - en
ID  - CRMATH_2003__336_3_207_0
ER  - 
%0 Journal Article
%A Ivan Mirković
%A Maxim Vybornov
%T On quiver varieties and affine Grassmannians of type A
%J Comptes Rendus. Mathématique
%D 2003
%P 207-212
%V 336
%N 3
%I Elsevier
%R 10.1016/S1631-073X(03)00022-0
%G en
%F CRMATH_2003__336_3_207_0
Ivan Mirković; Maxim Vybornov. On quiver varieties and affine Grassmannians of type A. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 207-212. doi : 10.1016/S1631-073X(03)00022-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00022-0/

[1] V. Baranovsky, V. Ginzburg, A. Kuznetsov, Wilson's Grassmannian and a noncommutative quadric, Preprint, 2002, | arXiv

[2] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, Preprint

[3] N. Chriss; V. Ginzburg Representation Theory and Complex Geometry, Birkhäuser, Boston, 1997

[4] V. Ginzburg Lagrangian construction of the enveloping algebra U(sln), C. R. Acad. Sci. Paris Sér. I Math., Volume 312 (1991) no. 12, pp. 907-912

[5] V. Ginzburg, Perverse sheaves on a loop group and Langlands duality, Preprint, 1995, | arXiv

[6] R. Howe Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur Lectures, Israel Math. Conf. Proc., 8, Tel Aviv, Bar-Ilan University, Ramat Gan, 1992, 1995, pp. 1-182

[7] B. Kostant Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math. (2), Volume 74 (1961), pp. 329-387

[8] G. Lusztig Green polynomials and singularities of unipotent classes, Adv. Math., Volume 42 (1981) no. 2, pp. 169-178

[9] G. Lusztig On quiver varieties, Adv. Math., Volume 136 (1998), pp. 141-182

[10] A. Maffei, Quiver varieties of type A, Preprint, 2000, | arXiv

[11] I. Mirković; K. Vilonen Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett., Volume 7 (2000) no. 1, pp. 13-24

[12] H. Nakajima Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras, Duke Math. J., Volume 76 (1994) no. 2, pp. 365-416

[13] H. Nakajima Quiver varieties and Kac–Moody algebras, Duke Math. J., Volume 91 (1998) no. 3, pp. 515-560

[14] P. Slodowy Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math., 815, Springer, Berlin, 1980

[15] G. Wilson Collisions of Calogero–Moser particles and an adelic Grassmannian. With an appendix by I.G. Macdonald, Invent. Math., Volume 133 (1998) no. 1, pp. 1-41

  • Ioana Coman; Myungbo Shim; Masahito Yamazaki; Yehao Zhou Communications in Mathematical Physics, 406 (2025) no. 6, p. 108 (Id/No 122) | DOI:10.1007/s00220-025-05277-7 | Zbl:8038216
  • Galyna Dobrovolska; Vinoth Nandakumar; David Yang Modular representations in type A with a two-row nilpotent central character, Journal of Algebra, Volume 643 (2024), pp. 311-339 | DOI:10.1016/j.jalgebra.2024.01.002 | Zbl:1552.20034
  • Naoki Genra; Thibault Juillard Reduction by stages for finite W-algebras, Mathematische Zeitschrift, Volume 308 (2024) no. 1, p. 36 (Id/No 15) | DOI:10.1007/s00209-024-03567-9 | Zbl:1554.17007
  • Ivan Danilenko Stable envelopes for slices of the affine Grassmannian, Selecta Mathematica. New Series, Volume 30 (2024) no. 4, p. 77 (Id/No 73) | DOI:10.1007/s00029-024-00953-3 | Zbl:1554.55006
  • Hiraku Nakajima Towards geometric Satake correspondence for Kac-Moody algebras, Cherkis bow varieties and affine Lie algebras of type A, Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, Volume 56 (2023) no. 6, pp. 1777-1824 | DOI:10.24033/asens.2567 | Zbl:1551.17028
  • A. Oblomkov; L. Rozansky 3D TQFT and HOMFLYPT homology, Letters in Mathematical Physics, Volume 113 (2023) no. 3, p. 62 (Id/No 71) | DOI:10.1007/s11005-023-01684-w | Zbl:1540.57045
  • Antoine Bourget; Julius F. Grimminger; Amihay Hanany; Marcus Sperling; Zhenghao Zhong Branes, quivers, and the affine Grassmannian, McKay correspondence, mutation and related topics. Proceedings of the conference on McKay correspondence, mutation and related topics, Tokyo, Japan, July 17 – August 14, 2020, Tokyo: Mathematical Society of Japan, 2023, pp. 331-436 | DOI:10.2969/aspm/08810331 | Zbl:1517.81082
  • Joel Kamnitzer; Khoa Pham; Alex Weekes Hamiltonian reduction for affine Grassmannian slices and truncated shifted Yangians, Advances in Mathematics, Volume 399 (2022), p. 52 (Id/No 108281) | DOI:10.1016/j.aim.2022.108281 | Zbl:1484.14095
  • Ivan Mirković; Maxim Vybornov Comparison of quiver varieties, loop Grassmannians and nilpotent cones in type A (with an appendix by Vasily Krylov), Advances in Mathematics, Volume 407 (2022), p. 54 (Id/No 108397) | DOI:10.1016/j.aim.2022.108397 | Zbl:1497.14096
  • Joel Kamnitzer Symplectic resolutions, symplectic duality, and Coulomb branches, Bulletin of the London Mathematical Society, Volume 54 (2022) no. 5, pp. 1515-1551 | DOI:10.1112/blms.12711 | Zbl:1531.16013
  • Dmitry Galakhov On supersymmetric interface defects, brane parallel transport, order-disorder transition and homological mirror symmetry, Journal of High Energy Physics, Volume 2022 (2022) no. 10, p. 138 (Id/No 76) | DOI:10.1007/jhep10(2022)076 | Zbl:1534.81114
  • Leonardo Santilli; Miguel Tierz Journal of High Energy Physics, 2022 (2022) no. 3, p. 62 (Id/No 73) | DOI:10.1007/jhep03(2022)073 | Zbl:1522.81659
  • Jiuzu Hong; Korkeat Korkeathikhun Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties, Representation Theory, Volume 26 (2022), pp. 585-615 | DOI:10.1090/ert/613 | Zbl:1497.14094
  • Ilya Dumanski; Evgeny Feigin; Michael Finkelberg Beilinson-Drinfeld Schubert varieties and global Demazure modules, Forum of Mathematics, Sigma, Volume 9 (2021), p. 25 (Id/No e42) | DOI:10.1017/fms.2021.36 | Zbl:1469.14102
  • Hiraku Nakajima Euler numbers of Hilbert schemes of points on simple surface singularities and quantum dimensions of standard modules of quantum affine algebras, Kyoto Journal of Mathematics, Volume 61 (2021) no. 2, pp. 377-397 | DOI:10.1215/21562261-2021-0006 | Zbl:1467.14011
  • Sabin Cautis; Clemens Koppensteiner Exotic t-structures and actions of quantum affine algebras, Journal of the European Mathematical Society (JEMS), Volume 22 (2020) no. 10, pp. 3263-3304 | DOI:10.4171/jems/986 | Zbl:1471.14038
  • Ben Webster; Alex Weekes; Oded Yacobi A quantum Mirković-Vybornov isomorphism, Representation Theory, Volume 24 (2020), pp. 38-84 | DOI:10.1090/ert/536 | Zbl:1496.17013
  • V. Lakshmibai; R. Singh Cotangent bundles of partial flag varieties and conormal varieties of their Schubert divisors, Transformation Groups, Volume 25 (2020) no. 1, pp. 127-148 | DOI:10.1007/s00031-019-09523-w | Zbl:1472.14053
  • Yoshiyuki Kimura Introduction to quiver varieties, Two algebraic byways from differential equations: Gröbner bases and quivers, Cham: Springer, 2020, pp. 231-270 | DOI:10.1007/978-3-030-26454-3_7 | Zbl:1455.16012
  • V. Lakshmibai; C. S. Seshadri; R. Singh Cotangent bundle to the flag variety. I, Transformation Groups, Volume 24 (2019) no. 1, pp. 127-147 | DOI:10.1007/s00031-017-9466-1 | Zbl:1419.14074
  • Anthony Henderson Involutions on the affine Grassmannian and moduli spaces of principal bundles, Bulletin of the Institute of Mathematics. Academia Sinica. New Series, Volume 13 (2018) no. 1, pp. 43-97 | DOI:10.21915/bimas.2018103 | Zbl:1423.14250
  • Sabin Cautis; Joel Kamnitzer Quantum K-theoretic geometric Satake: the SLn case, Compositio Mathematica, Volume 154 (2018) no. 2, pp. 275-327 | DOI:10.1112/s0010437x17007564 | Zbl:1433.17014
  • Sabin Cautis; Joel Kamnitzer Categorical geometric symmetric Howe duality, Selecta Mathematica. New Series, Volume 24 (2018) no. 2, pp. 1593-1631 | DOI:10.1007/s00029-017-0362-2 | Zbl:1423.14119
  • Mathew Bullimore; Tudor Dimofte; Davide Gaiotto The Coulomb branch of 3d N=4 theories, Communications in Mathematical Physics, Volume 354 (2017) no. 2, pp. 671-751 | DOI:10.1007/s00220-017-2903-0 | Zbl:1379.81072
  • Ben Webster On generalized category O for a quiver variety, Mathematische Annalen, Volume 368 (2017) no. 1-2, pp. 483-536 | DOI:10.1007/s00208-016-1438-6 | Zbl:1419.17015
  • V. Lakshmibai Cotangent bundle to the Grassmann variety, Transformation Groups, Volume 21 (2016) no. 2, pp. 519-530 | DOI:10.1007/s00031-015-9356-3 | Zbl:1390.14148
  • Sabin Cautis Clasp technology to knot homology via the affine Grassmannian, Mathematische Annalen, Volume 363 (2015) no. 3-4, pp. 1053-1115 | DOI:10.1007/s00208-015-1196-x | Zbl:1356.57013
  • Pramod N. Achar; Anthony Henderson; Simon Riche Geometric Satake, Springer correspondence, and small representations. II, Representation Theory, Volume 19 (2015), pp. 94-166 | DOI:10.1090/ert/465 | Zbl:1407.17008
  • P. Zinn-Justin Quiver varieties and the quantum Knizhnik-Zamolodchikov equation, Theoretical and Mathematical Physics, Volume 185 (2015) no. 3, pp. 1741-1758 | DOI:10.1007/s11232-015-0376-x | Zbl:1338.81229
  • Anthony Henderson; Anthony Licata Diagram automorphisms of quiver varieties, Advances in Mathematics, Volume 267 (2014), pp. 225-276 | DOI:10.1016/j.aim.2014.08.007 | Zbl:1308.17009
  • Bruce Fontaine; Joel Kamnitzer Cyclic sieving, rotation, and geometric representation theory, Selecta Mathematica. New Series, Volume 20 (2014) no. 2, pp. 609-625 | DOI:10.1007/s00029-013-0144-4 | Zbl:1295.22018
  • Carl Mautner A geometric Schur functor., Selecta Mathematica. New Series, Volume 20 (2014) no. 4, pp. 961-977 | DOI:10.1007/s00029-014-0147-9 | Zbl:1331.20061
  • Ivan Losev Isomorphisms of quantizations via quantization of resolutions, Advances in Mathematics, Volume 231 (2012) no. 3-4, pp. 1216-1270 | DOI:10.1016/j.aim.2012.06.017 | Zbl:1282.53070
  • Alexander Braverman; Michael Finkelberg Pursuing the double affine Grassmannian. I: Transversal slices via instantons on Ak-singularities, Duke Mathematical Journal, Volume 152 (2010) no. 2, pp. 175-206 | DOI:10.1215/00127094-2010-011 | Zbl:1200.14083
  • Sabin Cautis; Joel Kamnitzer; Anthony Licata Coherent sheaves and categorical sl2 actions, Duke Mathematical Journal, Volume 154 (2010) no. 1, pp. 135-179 | DOI:10.1215/00127094-2010-035 | Zbl:1228.14011
  • Sabin Cautis; Joel Kamnitzer; Anthony Licata Categorical geometric skew Howe duality, Inventiones Mathematicae, Volume 180 (2010) no. 1, pp. 111-159 | DOI:10.1007/s00222-009-0227-1 | Zbl:1254.17013
  • Sabin Cautis; Joel Kamnitzer Knot homology via derived categories of coherent sheaves. II: slm case, Inventiones Mathematicae, Volume 174 (2008) no. 1, pp. 165-232 | DOI:10.1007/s00222-008-0138-6 | Zbl:1298.57007
  • Anton Malkin; Viktor Ostrik; Maxim Vybornov Quiver varieties and Lusztig's algebra., Advances in Mathematics, Volume 203 (2006) no. 2, pp. 514-536 | DOI:10.1016/j.aim.2005.05.002 | Zbl:1120.16015
  • Anton Malkin; Viktor Ostrik; Maxim Vybornov The minimal degeneration singularities in the affine Grassmannians, Duke Mathematical Journal, Volume 126 (2005) no. 2, pp. 233-249 | DOI:10.1215/s0012-7094-04-12622-3 | Zbl:1078.14016

Cité par 39 documents. Sources : zbMATH

Commentaires - Politique