Let be two relatively prime integers and let be the numerical semigroup generated by and with Frobenius number . In this note, we prove that there exists a prime number with when the product is sufficiently large. Two related conjectures are posed and discussed as well.
Revised:
Accepted:
Published online:
J.L. Ramírez Alfonsín 1; M. Skałba 2
@article{CRMATH_2020__358_9-10_1001_0, author = {J.L. Ram{\'\i}rez Alfons{\'\i}n and M. Ska{\l}ba}, title = {Primes in numerical semigroups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1001--1004}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {9-10}, year = {2020}, doi = {10.5802/crmath.104}, language = {en}, }
J.L. Ramírez Alfonsín; M. Skałba. Primes in numerical semigroups. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1001-1004. doi : 10.5802/crmath.104. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.104/
[1] Integral points in rational polygons: a numerical semigroup approach, Semigroup Forum, Volume 94 (2017) no. 1, pp. 123-138 | DOI | MR | Zbl
[2] Primzahlverteilung, Die Grundlehren der Mathematischen Wissenschaften, 91, Springer, 1957 | MR | Zbl
[3] The Diophantine Frobenius Problem, Oxford Lecture Series in Mathematics and its Applications, 30, Oxford University Press, 2005 | MR | Zbl
[4] Elementary Theory of Numbers, North-Holland Mathematical Library, 31, PWN-Polish Scientific Publisher; North-Holland, 1988 | MR | Zbl
[5] Question 7382, Mathematical Questions from Educational Times, Volume 41 (1884), p. 21
[6] Introduction to Analytic and Probabilistic Number Theory, Graduate Studies in Mathematics, 163, American Mathematical Society, 2015 | MR | Zbl
[7] Zur additiven Zahlentheorie. II, Math. Z., Volume 40 (1936) no. 1, pp. 592-607 | DOI | MR | Zbl
[8] Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression, Bonner Mathematische Schriften, 404, University Bonn; Mathematisches Institut and Mathematisch-Naturwissenschaftliche Fakultät, 2011 | MR | Zbl
Cited by Sources:
Comments - Policy