We prove a complementary result to the probabilistic well-posedness for the nonlinear wave equation. More precisely, we show that there is a dense set of the Sobolev space of super-critical regularity such that (in sharp contrast with the probabilistic well-posedness results) the family of global smooth solutions, generated by the convolution with some approximate identity of the elements of , does not converge in the space of super-critical Sobolev regularity.
On démontre un résultat complémentaire à ceux manifestant le caractère bien posé probabiliste de l’équation des ondes avec des données initiales de régularité de Sobolev super critique par rapport au changement d’échelle laissant invariant l’équation.
Accepted:
Published online:
Chenmin Sun 1; Nikolay Tzvetkov 1
![](/mathematique/static/ptf/img/CC-BY%204.0.png)
@article{CRMATH_2020__358_9-10_989_0, author = {Chenmin Sun and Nikolay Tzvetkov}, title = {Concerning the pathological set in the context of probabilistic well-posedness}, journal = {Comptes Rendus. Math\'ematique}, pages = {989--999}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {9-10}, year = {2020}, doi = {10.5802/crmath.102}, language = {en}, }
TY - JOUR AU - Chenmin Sun AU - Nikolay Tzvetkov TI - Concerning the pathological set in the context of probabilistic well-posedness JO - Comptes Rendus. Mathématique PY - 2020 SP - 989 EP - 999 VL - 358 IS - 9-10 PB - Académie des sciences, Paris DO - 10.5802/crmath.102 LA - en ID - CRMATH_2020__358_9-10_989_0 ER -
Chenmin Sun; Nikolay Tzvetkov. Concerning the pathological set in the context of probabilistic well-posedness. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 989-999. doi : 10.5802/crmath.102. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.102/
[1] Loss of regularity for supercritical nonlinear Schrödinger equations, Math. Ann., Volume 343 (2009) no. 2, pp. 397-420 | DOI | Zbl
[2] On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on , , Trans. Am. Math. Soc., Volume 2 (2015), pp. 1-50 | DOI | Zbl
[3] Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 176 (1996) no. 2, pp. 421-445 | DOI | Zbl
[4] Random data Cauchy theory for supercritical wave equations I: local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475 | DOI | MR | Zbl
[5] Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS), Volume 16 (2014) no. 1, pp. 1-30 | DOI | MR | Zbl
[6] Ill-posedness for nonlinear Schrödinger and wave equations (2003) (https://arxiv.org/abs/math/0311048)
[7] Almost sure local well-posedness of the cubic NLS below , Duke Math. J., Volume 161 (2012) no. 3, pp. 367-414 | DOI | Zbl
[8] Regularity and asymptotic behaviour of the wave equation with a critical non linearity, Ann. Math., Volume 132 (1990) no. 3, pp. 485-509 | DOI | MR | Zbl
[9] Almost Sure Existence of Global Solutions for supercritical semilinear Wave Equations (2018) (https://arxiv.org/abs/1809.07061)
[10] Nonlinear optic and supercritical wave equation, Bull. Soc. R. Sci. Liège, Volume 70 (2001) no. 4-6, pp. 267-306 | Zbl
[11] Perte de régularité pour l’équation d’ondes sur-critiques, Bull. Soc. Math. Fr., Volume 133 (2005) no. 1, pp. 145-157 | DOI | Zbl
[12] A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations, Duke Math. J., Volume 72 (1993) no. 2, pp. 503-539 | DOI | MR | Zbl
[13] Random data Cauchy theory for nonlinear wave equations of power-type on , Commun. Partial Differ. Equations, Volume 39 (2014) no. 12, pp. 2262-2283 | DOI | MR | Zbl
[14] Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on , J. Math. Pures Appl., Volume 105 (2016) no. 3, pp. 342-366 | MR | Zbl
[15] Well-posedness in the energy space for semilinear wave equation with critical growth, Int. Math. Res. Not., Volume 1094 (1994) no. 7, pp. 303-309 | DOI | MR | Zbl
[16] New examples of probabilistic well-posedness for nonlinear wave equations, J. Funct. Anal., Volume 278 (2020) no. 2, 108322, 47 pages | MR | Zbl
[17] Probabilistic well-posedness for supercritical wave equations with periodic boundary condition on dimension three, Ill. J. Math., Volume 60 (2016) no. 2, pp. 481-503 | MR | Zbl
[18] Random data wave equations, Lecture Notes in Mathematics, 2253, Springer, 2019, pp. 221-313 | MR
[19] Equations aux dérivées partielles et aléa, Ph. D. Thesis, Université Paris-Sud, (France) (2016)
Cited by Sources:
Comments - Policy