Comptes Rendus
Group Theory
Finite groups with Quaternion Sylow subgroup
Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1097-1099.

In this paper we show that a finite group G with Quaternion Sylow 2-subgroup is 2-nilpotent if, either 3|G| or G is solvable and the order of its Sylow 2-subgroup is strictly greater than 16.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.131
Classification : 20D99, 20E45

Hamid Mousavi 1

1 Department of Mathematical Sciences, University of Tabriz, P.O.Box 51666-16471, Tabriz, Iran
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_9-10_1097_0,
     author = {Hamid Mousavi},
     title = {Finite groups with {Quaternion} {Sylow} subgroup},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1097--1099},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {9-10},
     year = {2020},
     doi = {10.5802/crmath.131},
     language = {en},
}
TY  - JOUR
AU  - Hamid Mousavi
TI  - Finite groups with Quaternion Sylow subgroup
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1097
EP  - 1099
VL  - 358
IS  - 9-10
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.131
LA  - en
ID  - CRMATH_2020__358_9-10_1097_0
ER  - 
%0 Journal Article
%A Hamid Mousavi
%T Finite groups with Quaternion Sylow subgroup
%J Comptes Rendus. Mathématique
%D 2020
%P 1097-1099
%V 358
%N 9-10
%I Académie des sciences, Paris
%R 10.5802/crmath.131
%G en
%F CRMATH_2020__358_9-10_1097_0
Hamid Mousavi. Finite groups with Quaternion Sylow subgroup. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1097-1099. doi : 10.5802/crmath.131. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.131/

[1] Richard Brauer; Michio Suzuki On finite groups of even order whose 2-Sylow group is a Quaternion group, Proc. Natl. Acad. Sci. USA, Volume 45 (1959), pp. 1757-1759 | DOI | MR | Zbl

[2] Michael J. Collins The characterisation of the Suzuki groups by their Sylow 2-subgroups, Math. Z., Volume 123 (1971), pp. 32-48 | DOI | MR | Zbl

[3] The GAP Group GAP – Groups, Algorithms, and Programming, Version 4.11.0, 2020 (http://www.gap-system.org)

[4] George Glauberman Factorizations in local subgroups of finite groups, Regional Conference Series in Mathematics, 33, American Mathematical Society, 1977 | MR | Zbl

[5] Daniel Gorenstein; John H. Walter The characterization of finite groups with dihedral Sylow 2-subgroups I., II., III, J. Algebra, Volume 2 (1965), p. 85-151; 218–270; 334–393 | DOI | Zbl

[6] I. Martin Isaacs Finite group theory, Graduate Studies in Mathematics, 92, American Mathematical Society, 2008 | MR | Zbl

[7] Stefan Kohl Counting the orbits on finite simple groups under the action of the automorphism group – Suzuki groups vs. linear groups, Commun. Algebra, Volume 30 (2002) no. 7, pp. 3515-3532 | DOI | MR | Zbl

[8] Warren J. Wong On finite groups whose 2-Sylow subgroups have cyclic subgroups of index 2, J. Aust. Math. Soc., Volume 4 (1964), pp. 90-112 | DOI | MR | Zbl

[9] Warren J. Wong On Finite Groups with Semi-Dihedral Sylow 2-Subgroups, J. Algebra, Volume 4 (1966), pp. 52-63 | DOI | MR

Cited by Sources:

Comments - Politique