L’équation de KdV est considérée comme un modèle approximatif pour des ondes longues de faible amplitude à la surface libre d’un fluide non visqueux. On montre qu’il y a une densité de moment approximative associée à l’équation de KdV, et que la différence entre cette densité et la densité de de moment physique dérivée dans le contexte du système d’Euler peut être estimée en fonction du paramètre d’onde longue.
Consideration is given to the KdV equation as an approximate model for long waves of small amplitude at the free surface of an inviscid fluid. It is shown that there is an approximate momentum density associated to the KdV equation, and the difference between this density and the physical momentum density derived in the context of the full Euler equations can be estimated in terms of the long-wave parameter.
Révisé le :
Accepté le :
Publié le :
Samer Israwi 1 ; Henrik Kalisch 2
@article{CRMATH_2021__359_1_39_0, author = {Samer Israwi and Henrik Kalisch}, title = {A {Mathematical} {Justification} of the {Momentum} {Density} {Function} {Associated} to the {KdV} {Equation}}, journal = {Comptes Rendus. Math\'ematique}, pages = {39--45}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {1}, year = {2021}, doi = {10.5802/crmath.143}, language = {en}, }
TY - JOUR AU - Samer Israwi AU - Henrik Kalisch TI - A Mathematical Justification of the Momentum Density Function Associated to the KdV Equation JO - Comptes Rendus. Mathématique PY - 2021 SP - 39 EP - 45 VL - 359 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crmath.143 LA - en ID - CRMATH_2021__359_1_39_0 ER -
Samer Israwi; Henrik Kalisch. A Mathematical Justification of the Momentum Density Function Associated to the KdV Equation. Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 39-45. doi : 10.5802/crmath.143. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.143/
[1] On the evolution of packets of water waves, J. Fluid Mech., Volume 92 (1979), pp. 691-715 | DOI | MR | Zbl
[2] Energy balance for undular bores, C. R. Méc. Acad. Sci. Paris, Volume 338 (2010) no. 2, pp. 67-70 | Zbl
[3] Mechanical balance laws for Boussinesq models of surface water waves, J. Nonlinear Sci., Volume 22 (2012) no. 3, pp. 371-398 | MR | Zbl
[4] On the formulation of mass, momentum and energy conservation in the KdV equation, Acta Appl. Math., Volume 133 (2014) no. 1, pp. 113-131 | MR | Zbl
[5] Regularity and uniqueness of solutions to the Boussinesq system of equations, J. Differ. Equations, Volume 54 (1984) no. 2, pp. 231-247 | DOI | MR | Zbl
[6] Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: The nonlinear theory, Nonlinearity, Volume 17 (2004) no. 3, pp. 925-952 | DOI | MR | Zbl
[7] Long wave approximations for water waves, Arch. Ration. Mech. Anal., Volume 178 (2005) no. 3, pp. 373-410 | DOI | MR | Zbl
[8] The initial value problem for the Korteweg–de Vries equation, Proc. R. Soc. Lond., Ser. A, Volume 278 (1975) no. 1287, pp. 555-601 | MR | Zbl
[9] The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal., Volume 192 (2009) no. 1, pp. 165-186 | DOI | MR | Zbl
[10] An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits, Commun. Partial Differ. Equations, Volume 10 (1985) no. 8, pp. 787-1003 | DOI | MR | Zbl
[11] Variable depth KdV equations and generalizations to more nonlinear regimes, ESAIM, Math. Model. Numer. Anal., Volume 44 (2010) no. 2, pp. 347-370 | DOI | Numdam | MR | Zbl
[12] Approximate conservation laws in the KdV equation, Physics Letters A, Volume 383 (2019) no. 9, pp. 854-858 | DOI | MR
[13] Energy invariant for shallow-water waves and the Korteweg–de Vries equation: Doubts about the invariance of energy, Phys. Rev. E, Volume 92 (2015) no. 5, 053202, 15 pages | DOI | MR
[14] Adiabatic invariants of the extended KdV equation, Phys. Lett., Volume 381 (2017) no. 4, pp. 270-275 | DOI | MR | Zbl
[15] Well-posedness of the water-waves equations, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 605-654 | DOI | MR | Zbl
[16] The Water Waves Problem. Mathematical analysis and asymptotics, Mathematical Surveys and Monographs, 188, American Mathematical Society, 2013 | Zbl
[17] The long-wave limit for the water wave problem. I. The case of zero surface tension, Commun. Pure Appl. Math., Volume 53 (2000) no. 12, pp. 1475-1535 | DOI | MR | Zbl
[18] Existence of solutions for the Boussinesq system of equations, J. Differ. Equations, Volume 42 (1981), pp. 325-352 | DOI | MR | Zbl
[19] Well-posedness in Sobolev spaces of the full water wave problem in -D, Invent. Math., Volume 130 (1997) no. 1, pp. 39-72 | MR | Zbl
Cité par Sources :
Commentaires - Politique