logo CRAS
Comptes Rendus. Mathématique
Analyse
New Inequalities of Simpson’s type for differentiable functions via generalized convex function
Comptes Rendus. Mathématique, Tome 359 (2021) no. 2, pp. 137-147.

This article presents some new inequalities of Simpson’s type for differentiable functions by using (α,m)-convexity. Some results for concavity are also obtained. These new estimates improve on the previously known ones. Some applications for special means of real numbers are also provided.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.152
Classification : 26A15,  26A51,  26D10
Shan E. Farooq 1 ; Khurram Shabir 2 ; Shahid Qaisar 3 ; Farooq Ahmad 4, 5 ; O. A. Almatroud 5

1. Department of Mathematics, Government College University, Lahore, Punjab, Pakistan
2. Department of Mathematics, Government College University, Lahore, Punjab, Pakistan.
3. Department of Mathematics, COMSATS University Islamabad, Sahiwal Campus, Pakistan.
4. Department of Mathematics, College of Sciences, University of Ha’il, Ha’il, KSA.
5. School of Mechanical and Aerospace Engineering, NANYANG Technological University, Singapore.
@article{CRMATH_2021__359_2_137_0,
     author = {Shan E. Farooq and Khurram Shabir and Shahid Qaisar and Farooq Ahmad and O. A. Almatroud},
     title = {New {Inequalities} of {Simpson{\textquoteright}s} type for differentiable functions via generalized convex function},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {137--147},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {2},
     year = {2021},
     doi = {10.5802/crmath.152},
     language = {en},
}
TY  - JOUR
AU  - Shan E. Farooq
AU  - Khurram Shabir
AU  - Shahid Qaisar
AU  - Farooq Ahmad
AU  - O. A. Almatroud
TI  - New Inequalities of Simpson’s type for differentiable functions via generalized convex function
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 137
EP  - 147
VL  - 359
IS  - 2
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.152
DO  - 10.5802/crmath.152
LA  - en
ID  - CRMATH_2021__359_2_137_0
ER  - 
%0 Journal Article
%A Shan E. Farooq
%A Khurram Shabir
%A Shahid Qaisar
%A Farooq Ahmad
%A O. A. Almatroud
%T New Inequalities of Simpson’s type for differentiable functions via generalized convex function
%J Comptes Rendus. Mathématique
%D 2021
%P 137-147
%V 359
%N 2
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.152
%R 10.5802/crmath.152
%G en
%F CRMATH_2021__359_2_137_0
Shan E. Farooq; Khurram Shabir; Shahid Qaisar; Farooq Ahmad; O. A. Almatroud. New Inequalities of Simpson’s type for differentiable functions via generalized convex function. Comptes Rendus. Mathématique, Tome 359 (2021) no. 2, pp. 137-147. doi : 10.5802/crmath.152. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.152/

[1] Mohammad Alomari; Maslina Darus; Sever S. Dragomir New inequalities of Simpson’s type for s-convex functions with applications (2009) (published in RGMIA Research report collection, https://rgmia.org/papers/v12n4/Simpson.pdf)

[2] Sever S. Dragomir; Ravi P. Agarwal; Pietro Cerone On Simpson’s inequality and applications, J. Inequal. Appl., Volume 5 (2000) no. 6, pp. 533-579 | MR 1812572 | Zbl 0976.26012

[3] Sever S. Dragomir; Simon Fitzpatrick The Hadamard inequalities for s-convex functions in the second sense, Demonstr. Math., Volume 32 (1999) no. 4, pp. 687-696 | MR 1740330 | Zbl 0952.26014

[4] Tingsong Du; Hao Wang; Muhammad Adil Khan; Yao Zhang Certain integral inequalities considering generalized m-convexity on fractal sets and their applications, Fractals-Complex Geometry, Patterns,and Scaling, Fractals, Volume 27 (2019) no. 7, 1950117, 17 pages | Zbl 1434.28018

[5] Uǧur S. Kirmaci Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., Volume 147 (2004) no. 1, pp. 137-146 | MR 2007685 | Zbl 1034.26019

[6] Zheng Liu An inequality of Simpson’s type, Proc. A, R. Soc. Lond., Volume 461 (2005) no. 2059, pp. 2155-2158 | MR 2154443 | Zbl 1186.26017

[7] Vasile G. Mihesan A generalization of the convexity, 1993 (Seminar on functional equations, approximation and convexity, Cluj-Napoca)

[8] Shahid Qaisar; Chuanjiang He; Sabir Hussain A generalizations of Simpson’s type inequality for differentiable functions using α,m -convex functions and applications, J. Inequal. Appl., Volume 2013 (2013), 158, 13 pages | MR 3055830 | Zbl 1284.26035

[9] Mehmet Zeki Sarikaya; Erhan Set; Muhamet Emin Özdemir On new inequalities of Simpson’s type for convex functions RGMIA Res. (2010) (published in RGMIA Research report collection, https://rgmia.org/papers/v13n1/sso3.pdf) | Zbl 1205.65132

[10] Mehmet Zeki Sarikaya; Erhan Set; Muhamet Emin Özdemir On new inequalities of Simpson’s type for s-convex functions,Computers and Mathematics with Applications, Comput. Math. Appl., Volume 60 (2010) no. 8, pp. 2191-2199 | Article | Zbl 1205.65132

[11] Erhan Set; Ahmet Ocak Akdemir; Muhamet Emin Özdemir Simpson’s type integral inequalities for convex functions via Riemann–Liouville integrals, Filomat, Volume 31 (2017) no. 14, pp. 4415-4420 | MR 3730366

Cité par Sources :