logo CRAS
Comptes Rendus. Mathématique
Harmonic analysis
A new note on factored infinite series and trigonometric Fourier series
Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 323-328.

In this paper, we have proved two main theorems under more weaker conditions dealing with absolute weighted arithmetic mean summability factors of infinite series and trigonometric Fourier series. We have also obtained certain new results on the different absolute summability methods.

Received:
Accepted:
Published online:
DOI: https://doi.org/10.5802/crmath.179
Classification: 26D15,  40D15,  42A24,  46A45
Hüseyin Bor 1

1. P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey
@article{CRMATH_2021__359_3_323_0,
     author = {H\"useyin Bor},
     title = {A new note on factored infinite series and trigonometric {Fourier} series},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {323--328},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {3},
     year = {2021},
     doi = {10.5802/crmath.179},
     language = {en},
}
TY  - JOUR
AU  - Hüseyin Bor
TI  - A new note on factored infinite series and trigonometric Fourier series
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 323
EP  - 328
VL  - 359
IS  - 3
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.179
DO  - 10.5802/crmath.179
LA  - en
ID  - CRMATH_2021__359_3_323_0
ER  - 
%0 Journal Article
%A Hüseyin Bor
%T A new note on factored infinite series and trigonometric Fourier series
%J Comptes Rendus. Mathématique
%D 2021
%P 323-328
%V 359
%N 3
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.179
%R 10.5802/crmath.179
%G en
%F CRMATH_2021__359_3_323_0
Hüseyin Bor. A new note on factored infinite series and trigonometric Fourier series. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 323-328. doi : 10.5802/crmath.179. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.179/

[1] Shri N. Bhatt An aspect of local property of |R,logn,1| summability of Fourier series, Tôhoku Math. J., Volume 11 (1959), pp. 13-19 | MR 107782 | Zbl 0107.05303

[2] Hüseyin Bor On |N ¯,p n | k summability factors, Proc. Am. Math. Soc., Volume 94 (1985), pp. 419-422

[3] Hüseyin Bor On two summability methods, Math. Proc. Camb. Philos. Soc., Volume 97 (1985), pp. 147-149 | MR 764503 | Zbl 0554.40008

[4] Hüseyin Bor On quasi-monotone sequences and their applications, Bull. Aust. Math. Soc., Volume 43 (1991) no. 2, pp. 187-192 | MR 1097058 | Zbl 0714.40002

[5] Hüseyin Bor On absolute weighted mean summability methods, Bull. Lond. Math. Soc., Volume 25 (1993) no. 3, pp. 265-268 | MR 1209251 | Zbl 0797.40005

[6] Hüseyin Bor On the absolute Riesz summability factors, Rocky Mt. J. Math., Volume 24 (1994) no. 4, pp. 1263-1271 | MR 1322227 | Zbl 0818.40002

[7] Hüseyin Bor On the local property of factored Fourier series, Z. Anal. Anwend., Volume 16 (1997) no. 3, pp. 769-773 | MR 1472731

[8] Hüseyin Bor A study on local properties of Fourier series, Nonlinear Anal., Theory Methods Appl., Volume 57 (2004) no. 2, pp. 191-197 | MR 2056426 | Zbl 1063.42003

[9] Hüseyin Bor A note on local property of factored Fourier series, Nonlinear Anal., Theory Methods Appl., Volume 64 (2006) no. 3, pp. 513-517 | MR 2191994 | Zbl 1099.42003

[10] Hüseyin Bor Some new results on infinite series and Fourier series, Positivity, Volume 19 (2015) no. 3, pp. 467-473 | MR 3386121 | Zbl 1342.40004

[11] Hüseyin Bor On absolute weighted mean summability of infinite series and Fourier series, Filomat, Volume 30 (2016) no. 10, pp. 2803-2807 | MR 3583405 | Zbl 06749925

[12] Hüseyin Bor Some new results on absolute Riesz summability of infinite series and Fourier series, Positivity, Volume 20 (2016) no. 3, pp. 599-605 | MR 3540513 | Zbl 1367.40020

[13] Hüseyin Bor Absolute weighted arithmetic mean summability factors of infinite series and trigonometric Fourier series, Filomat, Volume 31 (2017) no. 15, pp. 4963-4968 | MR 3725553

[14] Hüseyin Bor An application of power increasing sequences to infinite series and Fourier series, Filomat, Volume 31 (2017) no. 6, pp. 1543-1547 | MR 3635192

[15] Hüseyin Bor An application of quasi-monotone sequences to infinite series and Fourier series, Anal. Math. Phys., Volume 8 (2018) no. 1, pp. 77-83 | MR 3766639 | Zbl 1398.40014

[16] Hüseyin Bor On absolute summability of factored infinite series and trigonometric Fourier series, Results Math., Volume 73 (2018) no. 3, 116, 9 pages | MR 3840908 | Zbl 1408.40005

[17] Hüseyin Bor On absolute Riesz summability factors of infinite series and their application to Fourier series, Georgian Math. J., Volume 26 (2019) no. 3, pp. 361-366 | MR 4000603 | Zbl 1453.26019

[18] Hüseyin Bor Certain new factor theorems for infinite series and trigonometric Fourier series, Quaest. Math., Volume 43 (2020) no. 4, pp. 441-448 | Zbl 1451.40005

[19] Hüseyin Bor; Brian Kuttner On the necessary conditions for absolute weighted arithmetic mean summability factors, Acta Math. Hung., Volume 54 (1989) no. 1-5, pp. 57-61 | MR 1015778 | Zbl 0688.40002

[20] Hüseyin Bor; Dansheng Yu; Ping Zhou On local property of absolute summability of factored Fourier series, Filomat, Volume 28 (2014) no. 8, pp. 1675-1686 | MR 3360116 | Zbl 1454.42003

[21] Ernesto Cesàro Sur la multiplication des séries, Bull. Sci. Math., Volume 14 (1890), pp. 114-120 | Zbl 22.0248.01

[22] Kien-Kwong Chen Functions of bounded variation and the Cesàro means of Fourier series, Acad. Sinica Sci. Record, Volume 1 (1945), pp. 283-289 | Zbl 0063.00817

[23] Thomas M. Flett On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 113-141 | Article | MR 86912 | Zbl 0109.04402

[24] Godfrey H. Hardy Divergent Series, Clarendon Press, 1949 | Zbl 0032.05801

[25] Jung-Oh Lee On the summability of infinite series and Hüseyin Bor, J. Hist. Math., Volume 30 (2017), pp. 353-365 (in Korean, English translation available at https://sites.google.com/site/hbor33/paper-of-prof-lee-english)

[26] László Leindler A new application of quasi power increasing sequences, Publ. Math., Volume 58 (2001) no. 4, pp. 791-796 | MR 1828727

[27] Syed M. Mazhar Absolute summability factors of infinite series, Kyungpook Math. J., Volume 39 (1999) no. 1, pp. 67-73 | MR 1698675 | Zbl 0932.40006

[28] Hikmet S. Özarslan Local properties of generalized absolute matrix summability of factored Fourier series, Southeast Asian Bull. Math., Volume 43 (2019) no. 2, pp. 263-272 | MR 3931970 | Zbl 1438.42004

[29] Hikmet S. Özarslan A new factor theorem for absolute matrix summability, Quaest. Math., Volume 42 (2019) no. 6, pp. 803-809 | Article | MR 3989359 | Zbl 1432.40007

[30] Hikmet S. Özarslan On the localization of factored Fourier series, J. Comput. Anal. Appl., Volume 29 (2021), pp. 344-354

[31] Hikmet S. Özarslan; Şebnem Yıldız Local properties of absolute matrix summability of factored Fourier series, Filomat, Volume 31 (2017) no. 15, pp. 4897-4903 | Article | MR 3725547

[32] M. Ali Sarıgöl On local properties of summability of Fourier series, J. Comput. Anal. Appl., Volume 12 (2010) no. 4, pp. 817-820 | MR 2649301 | Zbl 1207.42003

[33] M. Ali Sarıgöl On the local properties of factored Fourier series, Appl. Math. Comput., Volume 216 (2010) no. 11, pp. 3386-3390 | MR 2653158 | Zbl 1194.42009

[34] M. Ali Sarıgöl; Hüseyin Bor Characterization of absolute summability factors, J. Math. Anal. Appl., Volume 195 (1995) no. 2, pp. 537-545 | Article | MR 1354561 | Zbl 0908.40004

[35] Genichiro Sunouchi Notes on Fourier analysis. XVIII. Absolute summability of series with constant terms, Tôhoku Math. J., Volume 1 (1949), pp. 57-65 | MR 34861 | Zbl 0041.39101

[36] Şebnem Yıldız On application of matrix summability to Fourier series, Math. Methods Appl. Sci., Volume 41 (2018) no. 2, pp. 664-670 | MR 3745337 | Zbl 1382.42001

[37] Şebnem Yıldız On the absolute matrix summability factors of Fourier series, Math. Notes, Volume 103 (2018) no. 2, pp. 297-303 | Article | MR 3776815

[38] Şebnem Yıldız On the generalizations of some factors theorems for infinite series and Fourier series, Filomat, Volume 33 (2019) no. 14, pp. 4343-4351 | Article | MR 4049151

[39] Şebnem Yıldız Matrix application of power increasing sequences to infinite series and Fourier series, Ukr. Math. J., Volume 72 (2020) no. 5, pp. 730-740 | Article

[40] Şebnem Yıldız A variation on absolute weighted mean summability factors of Fourier series and its conjugate series, Bol. Soc. Parana. Mat., Volume 38 (2020) no. 5, pp. 105-113 | Article | MR 3912262 | Zbl 1431.26018

Cited by Sources: