Gillespie posed two questions in [Front. Math. China 12 (2017) 97-115], one of which states that “for what rings do we have ?”. We give an answer to such a question. As applications, we obtain a new homological approach that unifies some well-known conditions of rings such that Krause’s recollement holds, and give an example to show that there exists a Gorenstein injective module which is not Gorenstein AC-injective. We also improve Neeman’s angle of view to the Grothendieck duality for derived categories of modules from the case of left Noether and right coherent rings such that all flat left modules have finite projective dimension to the case of left and right coherent rings.
Révisé le :
Accepté le :
Publié le :
Junpeng Wang 1 ; Zhongkui Liu 1 ; Gang Yang 2
@article{CRMATH_2021__359_5_593_0, author = {Junpeng Wang and Zhongkui Liu and Gang Yang}, title = {Gillespie{\textquoteright}s questions and {Grothendieck} duality}, journal = {Comptes Rendus. Math\'ematique}, pages = {593--607}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {5}, year = {2021}, doi = {10.5802/crmath.198}, language = {en}, }
Junpeng Wang; Zhongkui Liu; Gang Yang. Gillespie’s questions and Grothendieck duality. Comptes Rendus. Mathématique, Volume 359 (2021) no. 5, pp. 593-607. doi : 10.5802/crmath.198. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.198/
[1] Rings over which the class of Gorenstein flat modules is closed under extensions, Commun. Algebra, Volume 37 (2009) no. 3, pp. 855-868 | DOI | MR | Zbl
[2] Strongly Gorenstein projective, injective and flat modules, J. Pure Appl. Algebra, Volume 210 (2007) no. 2, pp. 437-445 | DOI | MR | Zbl
[3] Absolutely clean, level, and Gorenstein AC-injective complexes, Commun. Algebra, Volume 44 (2016) no. 5, pp. 2213-2233 | DOI | MR | Zbl
[4] The stable module category of a general ring (2014) (https://arxiv.org/abs/1405.5768)
[5] Homotopy equivalences induced by balanced pairs, J. Algebra, Volume 324 (2010) no. 10, pp. 2718-2731 | DOI | MR | Zbl
[6] Strongly Gorenstein flat modules, J. Aust. Math. Soc., Volume 86 (2009) no. 3, pp. 323-338 | DOI | MR | Zbl
[7] On the finiteness of Gorenstein homological dimensions, J. Algebra, Volume 372 (2012), pp. 376-396 | DOI | MR | Zbl
[8] On pure acyclic complexes, J. Algebra, Volume 465 (2016), pp. 190-213 | DOI | MR | Zbl
[9] Gorenstein injective and projective modules, Math. Z., Volume 220 (1995) no. 4, pp. 611-633 | DOI | MR | Zbl
[10] Relative Homological Algebra, de Gruyter Expositions in Mathematics, 30, Walter de Gruyter, 2000 | MR | Zbl
[11] Gorenstein flat modules, J. Nanjing Univ., Math. Biq., Volume 10 (1993) no. 1, pp. 1-9 | MR | Zbl
[12] The projective stable category of a coherent scheme, Proc. R. Soc. Edinb., Sect. A, Math., Volume 149 (2019) no. 1, pp. 15-43 | DOI | MR | Zbl
[13] Acyclic complexes and Gorenstein rings, Algebra Colloq., Volume 27 (2020) no. 3, pp. 575-586 | DOI | MR | Zbl
[14] Gorenstein derived categories, J. Algebra, Volume 323 (2010) no. 7, pp. 2041-2057 | MR | Zbl
[15] Covers and Envelopes in the Category of Complexes of Modules, CRC Research Notes in Mathematics, 407, Chapman & Hall/CRC, 1999 | MR | Zbl
[16] The flat model structure on , Trans. Am. Math. Soc., Volume 356 (2004) no. 8, pp. 3369-3390 | DOI | MR | Zbl
[17] Model Structures on Modules over Ding-Chen rings, Homology Homotopy Appl., Volume 12 (2010) no. 1, pp. 61-73 | DOI | MR | Zbl
[18] Gorenstein complexes and recollements from cotorsion pairs, Adv. Math., Volume 291 (2016), pp. 859-911 | DOI | MR | Zbl
[19] Models for homotopy categories of injectives and Gorenstein injectives, Commun. Algebra, Volume 45 (2017) no. 6, pp. 2520-2545 | DOI | MR | Zbl
[20] On Ding injective, Ding projective, and Ding flat modules and complexes, Rocky Mt. J. Math., Volume 47 (2017) no. 8, pp. 2641-2673 | MR | Zbl
[21] On the homotopy category of AC-injective complexes, Front. Math. China, Volume 12 (2017) no. 1, pp. 97-115 | DOI | MR | Zbl
[22] AC-Gorenstein rings and their stable module categories, J. Aust. Math. Soc., Volume 107 (2019) no. 2, pp. 181-198 | DOI | MR | Zbl
[23] Gorenstein homological dimensions, J. Pure Appl. Algebra, Volume 189 (2004) no. 1-3, pp. 167-193 | DOI | MR | Zbl
[24] Acyclicity versus total acyclicity for complexes over noetherian rings, Doc. Math., Volume 11 (2006), pp. 207-240 | MR | Zbl
[25] The homotopy category of complexes of projective modules, Adv. Math., Volume 193 (2005) no. 1, pp. 223-232 | DOI | MR | Zbl
[26] On the global dimension of fibre products, Pac. J. Math., Volume 134 (1988) no. 1, pp. 121-132 | DOI | MR | Zbl
[27] The stable derived category of a Noetherian scheme, Compos. Math., Volume 141 (2005) no. 5, pp. 1128-1162 | DOI | MR | Zbl
[28] Gorenstein injective complexes of modules over Noetherian rings, J. Algebra, Volume 321 (2009) no. 5, pp. 1546-1554 | DOI | MR | Zbl
[29] Gorenstein cohomology of -complexes, J. Algebra Appl., Volume 19 (2020) no. 9, 2050174, 14 pages | MR | Zbl
[30] Gorenstein FP-injective and Gorenstein flat modules, J. Algebra, Volume 7 (2008) no. 4, pp. 497-506 | MR | Zbl
[31] The mock homotopy category of projectives and Grothendieck duality, Ph. D. Thesis, Australian National University (Australia) (2007) (available at www.therisingsea.org)
[32] The connection between the -theory localisation theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992), pp. 547-566 | DOI | Numdam | Zbl
[33] The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Am. Math. Soc., Volume 9 (1996) no. 1, pp. 205-236 | DOI | MR | Zbl
[34] The homotopy category of flat modules, and Grothendieck duality, Invent. Math., Volume 174 (2008) no. 2, pp. 255-308 | DOI | MR | Zbl
[35] On purity and applications to coderived and singularity categories (2014) (https://arxiv.org/abs/1412.1615)
[36] A negative answer to a question of Gillespies, Sci. China, Math. (2018), pp. 1121-1130
[37] Gorenstein projective, injective and flat complexes, Acta Math. Sin., Volume 54 (2011) no. 3, pp. 451-460 | MR | Zbl
[38] Characterizations of Ding injective complexes, Bull. Malays. Math. Sci. Soc., Volume 43 (2020) no. 3, pp. 2385-2398 | DOI | MR | Zbl
[39] Model structures on categories of complexes over Ding-Chen rings, Commun. Algebra, Volume 41 (2013) no. 1, pp. 50-69 | DOI | MR | Zbl
[40] Strongly Gorenstein projective, injective and flat modules, J. Algebra, Volume 320 (2008) no. 7, pp. 2659-2674 | DOI | MR | Zbl
[41] Gorenstein projective, injective, and flat complexes, Commun. Algebra, Volume 39 (2011) no. 5, pp. 1705-1721 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique