Gillespie posed two questions in [Front. Math. China 12 (2017) 97-115], one of which states that “for what rings
Révisé le :
Accepté le :
Publié le :
Junpeng Wang 1 ; Zhongkui Liu 1 ; Gang Yang 2

@article{CRMATH_2021__359_5_593_0, author = {Junpeng Wang and Zhongkui Liu and Gang Yang}, title = {Gillespie{\textquoteright}s questions and {Grothendieck} duality}, journal = {Comptes Rendus. Math\'ematique}, pages = {593--607}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {5}, year = {2021}, doi = {10.5802/crmath.198}, language = {en}, }
Junpeng Wang; Zhongkui Liu; Gang Yang. Gillespie’s questions and Grothendieck duality. Comptes Rendus. Mathématique, Volume 359 (2021) no. 5, pp. 593-607. doi : 10.5802/crmath.198. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.198/
[1] Rings over which the class of Gorenstein flat modules is closed under extensions, Commun. Algebra, Volume 37 (2009) no. 3, pp. 855-868 | DOI | MR | Zbl
[2] Strongly Gorenstein projective, injective and flat modules, J. Pure Appl. Algebra, Volume 210 (2007) no. 2, pp. 437-445 | DOI | MR | Zbl
[3] Absolutely clean, level, and Gorenstein AC-injective complexes, Commun. Algebra, Volume 44 (2016) no. 5, pp. 2213-2233 | DOI | MR | Zbl
[4] The stable module category of a general ring (2014) (https://arxiv.org/abs/1405.5768)
[5] Homotopy equivalences induced by balanced pairs, J. Algebra, Volume 324 (2010) no. 10, pp. 2718-2731 | DOI | MR | Zbl
[6] Strongly Gorenstein flat modules, J. Aust. Math. Soc., Volume 86 (2009) no. 3, pp. 323-338 | DOI | MR | Zbl
[7] On the finiteness of Gorenstein homological dimensions, J. Algebra, Volume 372 (2012), pp. 376-396 | DOI | MR | Zbl
[8] On pure acyclic complexes, J. Algebra, Volume 465 (2016), pp. 190-213 | DOI | MR | Zbl
[9] Gorenstein injective and projective modules, Math. Z., Volume 220 (1995) no. 4, pp. 611-633 | DOI | MR | Zbl
[10] Relative Homological Algebra, de Gruyter Expositions in Mathematics, 30, Walter de Gruyter, 2000 | MR | Zbl
[11] Gorenstein flat modules, J. Nanjing Univ., Math. Biq., Volume 10 (1993) no. 1, pp. 1-9 | MR | Zbl
[12] The projective stable category of a coherent scheme, Proc. R. Soc. Edinb., Sect. A, Math., Volume 149 (2019) no. 1, pp. 15-43 | DOI | MR | Zbl
[13] Acyclic complexes and Gorenstein rings, Algebra Colloq., Volume 27 (2020) no. 3, pp. 575-586 | DOI | MR | Zbl
[14] Gorenstein derived categories, J. Algebra, Volume 323 (2010) no. 7, pp. 2041-2057 | MR | Zbl
[15] Covers and Envelopes in the Category of Complexes of Modules, CRC Research Notes in Mathematics, 407, Chapman & Hall/CRC, 1999 | MR | Zbl
[16] The flat model structure on
[17] Model Structures on Modules over Ding-Chen rings, Homology Homotopy Appl., Volume 12 (2010) no. 1, pp. 61-73 | DOI | MR | Zbl
[18] Gorenstein complexes and recollements from cotorsion pairs, Adv. Math., Volume 291 (2016), pp. 859-911 | DOI | MR | Zbl
[19] Models for homotopy categories of injectives and Gorenstein injectives, Commun. Algebra, Volume 45 (2017) no. 6, pp. 2520-2545 | DOI | MR | Zbl
[20] On Ding injective, Ding projective, and Ding flat modules and complexes, Rocky Mt. J. Math., Volume 47 (2017) no. 8, pp. 2641-2673 | MR | Zbl
[21] On the homotopy category of AC-injective complexes, Front. Math. China, Volume 12 (2017) no. 1, pp. 97-115 | DOI | MR | Zbl
[22] AC-Gorenstein rings and their stable module categories, J. Aust. Math. Soc., Volume 107 (2019) no. 2, pp. 181-198 | DOI | MR | Zbl
[23] Gorenstein homological dimensions, J. Pure Appl. Algebra, Volume 189 (2004) no. 1-3, pp. 167-193 | DOI | MR | Zbl
[24] Acyclicity versus total acyclicity for complexes over noetherian rings, Doc. Math., Volume 11 (2006), pp. 207-240 | MR | Zbl
[25] The homotopy category of complexes of projective modules, Adv. Math., Volume 193 (2005) no. 1, pp. 223-232 | DOI | MR | Zbl
[26] On the global dimension of fibre products, Pac. J. Math., Volume 134 (1988) no. 1, pp. 121-132 | DOI | MR | Zbl
[27] The stable derived category of a Noetherian scheme, Compos. Math., Volume 141 (2005) no. 5, pp. 1128-1162 | DOI | MR | Zbl
[28] Gorenstein injective complexes of modules over Noetherian rings, J. Algebra, Volume 321 (2009) no. 5, pp. 1546-1554 | DOI | MR | Zbl
[29] Gorenstein cohomology of
[30] Gorenstein FP-injective and Gorenstein flat modules, J. Algebra, Volume 7 (2008) no. 4, pp. 497-506 | MR | Zbl
[31] The mock homotopy category of projectives and Grothendieck duality, Ph. D. Thesis, Australian National University (Australia) (2007) (available at www.therisingsea.org)
[32] The connection between the
[33] The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Am. Math. Soc., Volume 9 (1996) no. 1, pp. 205-236 | DOI | MR | Zbl
[34] The homotopy category of flat modules, and Grothendieck duality, Invent. Math., Volume 174 (2008) no. 2, pp. 255-308 | DOI | MR | Zbl
[35] On purity and applications to coderived and singularity categories (2014) (https://arxiv.org/abs/1412.1615)
[36] A negative answer to a question of Gillespies, Sci. China, Math. (2018), pp. 1121-1130
[37] Gorenstein projective, injective and flat complexes, Acta Math. Sin., Volume 54 (2011) no. 3, pp. 451-460 | MR | Zbl
[38] Characterizations of Ding injective complexes, Bull. Malays. Math. Sci. Soc., Volume 43 (2020) no. 3, pp. 2385-2398 | DOI | MR | Zbl
[39] Model structures on categories of complexes over Ding-Chen rings, Commun. Algebra, Volume 41 (2013) no. 1, pp. 50-69 | DOI | MR | Zbl
[40] Strongly Gorenstein projective, injective and flat modules, J. Algebra, Volume 320 (2008) no. 7, pp. 2659-2674 | DOI | MR | Zbl
[41] Gorenstein projective, injective, and flat complexes, Commun. Algebra, Volume 39 (2011) no. 5, pp. 1705-1721 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique