[Quand les classes de modules de Gorenstein sont-elles (co)basculantes ?]
Pour la classe des modules Gorenstein-projectifs (respectivement -injectifs et -plats), nous étudions et réglons les questions de savoir quand la seconde est basculante et les autres cobasculantes. Les applications vont dans trois directions. La première est d’obtenir la coïncidence entre les propriétés de ces classes d’être, respectivement, 1-basculante et bousculante, ainsi que la propriété d’être 1-cobasculante et cobousculante. La deuxième consiste à caractériser les modules de Gorenstein via des modules finiment engendrés, ce qui prouve que les anneaux noethériens à gauche de dimension globale de Gorenstein gauche finie satisfont la première conjecture de la dimension finitiste et un résultat lié à une question posée par Bazzoni dans [J. Algebra 320 (2008) 4281-4299]. Le dernier objectif est de donner de nouvelles caractérisations des domaines de Dedekind et de Prüfer et des algèbres d’Artin de Gorenstein commutatives, ainsi que des anneaux de Gorenstein généraux (éventuellement non commutatifs) et des anneaux de Ding–Chen.
For the class of Gorenstein projective (resp. injective and flat) modules, we investigate and settle the questions when the middle class is tilting and the other ones are cotilting. The applications have in three directions. The first is to obtain the coincidence between the 1-tilting and silting property, as well as the 1-cotilting and cosilting property of such classes respectively. The second is to characterize Gorenstein modules via finitely generated modules, which provides a proof of that left Noetherian rings with finite left Gorenstein global dimension satisfy First Finitistic Dimension Conjecture and a result related to a question posed by Bazzoni in [J. Algebra 320 (2008) 4281-4299]. The last is to give some new characterizations of Dedekind and Prüfer domains and commutative Gorenstein Artin algebras as well as general (possibly not commutative) Gorenstein rings and Ding–Chen rings.
Révisé le :
Accepté le :
Publié le :
Keywords: Gorenstein projective (resp. injective and flat) module, (co)tilting class, finitistic dimension conjecture, (strongly) finite type
Mot clés : Module Gorenstein-projectif (respectivement $G$-injectif et $G$-plat), classe de (co)basculement, conjecture de la dimension finitiste, type (fortement) fini
Junpeng Wang 1 ; Zhongkui Liu 1 ; Renyu Zhao 1
@article{CRMATH_2024__362_G11_1301_0, author = {Junpeng Wang and Zhongkui Liu and Renyu Zhao}, title = {When are the classes of {Gorenstein} modules (co)tilting?}, journal = {Comptes Rendus. Math\'ematique}, pages = {1301--1325}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.639}, language = {en}, }
Junpeng Wang; Zhongkui Liu; Renyu Zhao. When are the classes of Gorenstein modules (co)tilting?. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1301-1325. doi : 10.5802/crmath.639. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.639/
[1] Stable module theory, Memoirs of the American Mathematical Society, 94, American Mathematical Society, 1969, 146 pages | MR | Zbl
[2] Infinitely generated tilting modules of finite projective dimension, Forum Math., Volume 13 (2001) no. 2, pp. 239-250 | DOI | MR | Zbl
[3] Silting modules over commutative rings, Int. Math. Res. Not., Volume 2017 (2017) no. 13, pp. 4131-4151 | DOI | MR | Zbl
[4] Tilting modules and Gorenstein rings, Forum Math., Volume 18 (2006) no. 2, pp. 211-229 | DOI | MR | Zbl
[5] Silting modules, Int. Math. Res. Not., Volume 2016 (2016) no. 4, pp. 1251-1284 | DOI | MR | Zbl
[6] Tilting theory and the finitistic dimension conjectures, Trans. Am. Math. Soc., Volume 354 (2002) no. 11, pp. 4345-4358 | DOI | MR | Zbl
[7] On the telescope conjecture for module categories, J. Pure Appl. Algebra, Volume 212 (2008) no. 2, pp. 297-310 | DOI | MR | Zbl
[8] On the abundance of silting modules, Surveys in representation theory of algebras (Contemporary Mathematics), Volume 716, American Mathematical Society, 2018, pp. 1-23 | DOI | MR | Zbl
[9] When are definable classes tilting and cotilting classes?, J. Algebra, Volume 320 (2008) no. 12, pp. 4281-4299 | DOI | MR | Zbl
[10] Rings over which the class of Gorenstein flat modules is closed under extensions, Commun. Algebra, Volume 37 (2009) no. 3, pp. 855-868 | DOI | MR | Zbl
[11] The stable module category of a general ring (2014) (https://arxiv.org/abs/1405.5768)
[12] Global Gorenstein dimensions, Proc. Am. Math. Soc., Volume 138 (2010) no. 2, pp. 461-465 | DOI | MR | Zbl
[13] On Gorenstein flat dimension, J. Algebra Appl., Volume 14 (2015) no. 6, 1550096, 18 pages | DOI | MR | Zbl
[14] Cosilting modules, Algebr. Represent. Theory, Volume 20 (2017) no. 5, pp. 1305-1321 | DOI | MR | Zbl
[15] Gorenstein weak global dimension is symmetric, Math. Nachr., Volume 294 (2021) no. 11, pp. 2121-2128 | DOI | MR | Zbl
[16] Five theorems on Gorenstein global dimensions, Algebra and coding theory. Virtual conference in honor of Tariq Rizvi. Noncommutative rings and their applications VII, Université d’Artois, Lens, France, July 5–7, 2021. Virtual conference on quadratic forms, rings and codes, Université d’Artois, Lens, France, July 8, 2021, American Mathematical Society, 2023, pp. 67-78 | DOI | Zbl
[17] Derived category methods in commutative algebra (2022) (preprint)
[18] Direct products of modules, Trans. Am. Math. Soc., Volume 97 (1960), pp. 457-473 | DOI | MR | Zbl
[19] Homotopy equivalences induced by balanced pairs, J. Algebra, Volume 324 (2010) no. 10, pp. 2718-2731 | DOI | MR | Zbl
[20] The flat dimensions of injective modules, Manuscr. Math., Volume 78 (1993) no. 2, pp. 165-177 | DOI | MR | Zbl
[21] Coherent rings with finite self--injective dimension, Commun. Algebra, Volume 24 (1996) no. 9, pp. 2963-2980 | DOI | MR | Zbl
[22] Strongly Gorenstein flat modules, J. Aust. Math. Soc., Volume 86 (2009) no. 3, pp. 323-338 | DOI | MR | Zbl
[23] Tilting subcategories with respect to cotorsion triples in abelian categories, Proc. R. Soc. Edinb., Sect. A, Math., Volume 147 (2017) no. 4, pp. 703-726 | DOI | MR | Zbl
[24] Relative homological algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter, 2000, xii+339 pages | DOI | MR | Zbl
[25] Gorenstein injective modules and Ext, Tsukuba J. Math., Volume 28 (2004) no. 2, pp. 303-309 | DOI | MR | Zbl
[26] Gorenstein injective and projective modules, Math. Z., Volume 220 (1995) no. 4, pp. 611-633 | DOI | MR | Zbl
[27] Gorenstein flat modules, J. Nanjing Univ., Math. Biq., Volume 10 (1993) no. 1, pp. 1-9 | MR | Zbl
[28] On the finiteness of Gorenstein homological dimensions, J. Algebra, Volume 372 (2012), pp. 376-396 | DOI | MR | Zbl
[29] Model structures on modules over Ding–Chen rings, Homology Homotopy Appl., Volume 12 (2010) no. 1, pp. 61-73 | DOI | MR | Zbl
[30] Gorenstein complexes and recollements from cotorsion pairs, Adv. Math., Volume 291 (2016), pp. 859-911 | DOI | MR | Zbl
[31] On Ding injective, Ding projective and Ding flat modules and complexes, Rocky Mt. J. Math., Volume 47 (2017) no. 8, pp. 2641-2673 | DOI | MR | Zbl
[32] Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, 2006 | DOI | Zbl
[33] Gorenstein homological dimensions, J. Pure Appl. Algebra, Volume 189 (2004) no. 1-3, pp. 167-193 | DOI | MR | Zbl
[34] On rings with finite self-injective dimension, Commun. Algebra, Volume 7 (1979) no. 4, pp. 393-414 | DOI | MR | Zbl
[35] Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, 1999, xxiv+557 pages | DOI | MR | Zbl
[36] Noncommutative -hereditary rings, J. Algebra Appl., Volume 20 (2021) no. 4, 2150052, 13 pages | DOI | MR | Zbl
[37] Infinitely generated Gorenstein tilting modules, Algebr. Represent. Theory, Volume 25 (2022) no. 6, pp. 1389-1427 | DOI | MR | Zbl
[38] Finitistic dimension conjectures via Gorenstein projective dimension, J. Algebra, Volume 591 (2022), pp. 15-35 | DOI | MR | Zbl
[39] An introduction to homological algebra, Pure and Applied Mathematics, 85, Academic Press Inc., 1979, xi+376 pages | MR | Zbl
[40] An example in Noetherian rings, Proc. Natl. Acad. Sci. USA, Volume 54 (1965), pp. 1035-1036 | DOI | MR | Zbl
[41] Ding projective dimension of Gorenstein flat modules, Bull. Korean Math. Soc., Volume 54 (2017) no. 6, pp. 1935-1950 | DOI | MR | Zbl
[42] Relative singularity categories, Gorenstein objects and silting theory, J. Pure Appl. Algebra, Volume 222 (2018) no. 8, pp. 2310-2322 | DOI | MR | Zbl
[43] When the kernel of a complete hereditary cotorsion pair is the additive closure of a tilting module, J. Algebra, Volume 530 (2019), pp. 94-113 | DOI | MR | Zbl
[44] On Gorenstein global and Gorenstein weak global dimensions, Colloq. Math., Volume 174 (2023) no. 1, pp. 45-67 | DOI | MR | Zbl
[45] On rings with finite Gorenstein weak global dimension, J. Algebra Appl., Volume 22 (2023) no. 5, 2350111, 15 pages | DOI | MR | Zbl
[46] Singular compactness and definability for -cotorsion and Gorenstein modules, Sel. Math., New Ser., Volume 26 (2020) no. 2, 23, 40 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique