Comptes Rendus
Article de recherche - Algèbre
When are the classes of Gorenstein modules (co)tilting?
[Quand les classes de modules de Gorenstein sont-elles (co)basculantes ?]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1301-1325.

Pour la classe des modules Gorenstein-projectifs (respectivement G-injectifs et G-plats), nous étudions et réglons les questions de savoir quand la seconde est basculante et les autres cobasculantes. Les applications vont dans trois directions. La première est d’obtenir la coïncidence entre les propriétés de ces classes d’être, respectivement, 1-basculante et bousculante, ainsi que la propriété d’être 1-cobasculante et cobousculante. La deuxième consiste à caractériser les modules de Gorenstein via des modules finiment engendrés, ce qui prouve que les anneaux noethériens à gauche de dimension globale de Gorenstein gauche finie satisfont la première conjecture de la dimension finitiste et un résultat lié à une question posée par Bazzoni dans [J. Algebra 320 (2008) 4281-4299]. Le dernier objectif est de donner de nouvelles caractérisations des domaines de Dedekind et de Prüfer et des algèbres d’Artin de Gorenstein commutatives, ainsi que des anneaux de Gorenstein généraux (éventuellement non commutatifs) et des anneaux de Ding–Chen.

For the class of Gorenstein projective (resp. injective and flat) modules, we investigate and settle the questions when the middle class is tilting and the other ones are cotilting. The applications have in three directions. The first is to obtain the coincidence between the 1-tilting and silting property, as well as the 1-cotilting and cosilting property of such classes respectively. The second is to characterize Gorenstein modules via finitely generated modules, which provides a proof of that left Noetherian rings with finite left Gorenstein global dimension satisfy First Finitistic Dimension Conjecture and a result related to a question posed by Bazzoni in [J. Algebra 320 (2008) 4281-4299]. The last is to give some new characterizations of Dedekind and Prüfer domains and commutative Gorenstein Artin algebras as well as general (possibly not commutative) Gorenstein rings and Ding–Chen rings.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.639
Classification : 18G25, 18E45, 16E60, 16E65
Keywords: Gorenstein projective (resp. injective and flat) module, (co)tilting class, finitistic dimension conjecture, (strongly) finite type
Mot clés : Module Gorenstein-projectif (respectivement $G$-injectif et $G$-plat), classe de (co)basculement, conjecture de la dimension finitiste, type (fortement) fini

Junpeng Wang 1 ; Zhongkui Liu 1 ; Renyu Zhao 1

1 Department of Mathematics, Northwest Normal University, Lanzhou 730070, People’s Republic of China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1301_0,
     author = {Junpeng Wang and Zhongkui Liu and Renyu Zhao},
     title = {When are the classes of {Gorenstein} modules (co)tilting?},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1301--1325},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.639},
     language = {en},
}
TY  - JOUR
AU  - Junpeng Wang
AU  - Zhongkui Liu
AU  - Renyu Zhao
TI  - When are the classes of Gorenstein modules (co)tilting?
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1301
EP  - 1325
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.639
LA  - en
ID  - CRMATH_2024__362_G11_1301_0
ER  - 
%0 Journal Article
%A Junpeng Wang
%A Zhongkui Liu
%A Renyu Zhao
%T When are the classes of Gorenstein modules (co)tilting?
%J Comptes Rendus. Mathématique
%D 2024
%P 1301-1325
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.639
%G en
%F CRMATH_2024__362_G11_1301_0
Junpeng Wang; Zhongkui Liu; Renyu Zhao. When are the classes of Gorenstein modules (co)tilting?. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1301-1325. doi : 10.5802/crmath.639. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.639/

[1] Maurice Auslander; Mark Bridger Stable module theory, Memoirs of the American Mathematical Society, 94, American Mathematical Society, 1969, 146 pages | MR | Zbl

[2] Lidia Angeleri Hügel; Flávio Ulhoa Coelho Infinitely generated tilting modules of finite projective dimension, Forum Math., Volume 13 (2001) no. 2, pp. 239-250 | DOI | MR | Zbl

[3] Lidia Angeleri Hügel; Michal Hrbek Silting modules over commutative rings, Int. Math. Res. Not., Volume 2017 (2017) no. 13, pp. 4131-4151 | DOI | MR | Zbl

[4] Lidia Angeleri Hügel; Dolors Herbera; Jan Trlifaj Tilting modules and Gorenstein rings, Forum Math., Volume 18 (2006) no. 2, pp. 211-229 | DOI | MR | Zbl

[5] Lidia Angeleri Hügel; Frederik Marks; Jorge Vitória Silting modules, Int. Math. Res. Not., Volume 2016 (2016) no. 4, pp. 1251-1284 | DOI | MR | Zbl

[6] Lidia Angeleri Hügel; Jan Trlifaj Tilting theory and the finitistic dimension conjectures, Trans. Am. Math. Soc., Volume 354 (2002) no. 11, pp. 4345-4358 | DOI | MR | Zbl

[7] Lidia Angeleri Hügel; Jan Šaroch; Jan Trlifaj On the telescope conjecture for module categories, J. Pure Appl. Algebra, Volume 212 (2008) no. 2, pp. 297-310 | DOI | MR | Zbl

[8] Lidia Angeleri Hügel On the abundance of silting modules, Surveys in representation theory of algebras (Contemporary Mathematics), Volume 716, American Mathematical Society, 2018, pp. 1-23 | DOI | MR | Zbl

[9] Silvana Bazzoni When are definable classes tilting and cotilting classes?, J. Algebra, Volume 320 (2008) no. 12, pp. 4281-4299 | DOI | MR | Zbl

[10] Driss Bennis Rings over which the class of Gorenstein flat modules is closed under extensions, Commun. Algebra, Volume 37 (2009) no. 3, pp. 855-868 | DOI | MR | Zbl

[11] Daniel Bravo; James Gillespie; Mark Hovey The stable module category of a general ring (2014) (https://arxiv.org/abs/1405.5768)

[12] Driss Bennis; Najib Mahdou Global Gorenstein dimensions, Proc. Am. Math. Soc., Volume 138 (2010) no. 2, pp. 461-465 | DOI | MR | Zbl

[13] Samir Bouchiba On Gorenstein flat dimension, J. Algebra Appl., Volume 14 (2015) no. 6, 1550096, 18 pages | DOI | MR | Zbl

[14] Simion Breaz; Flaviu Pop Cosilting modules, Algebr. Represent. Theory, Volume 20 (2017) no. 5, pp. 1305-1321 | DOI | MR | Zbl

[15] Lars Winther Christensen; Sergio Estrada; Peder Thompson Gorenstein weak global dimension is symmetric, Math. Nachr., Volume 294 (2021) no. 11, pp. 2121-2128 | DOI | MR | Zbl

[16] Lars Winther Christensen; Sergio Estrada; Peder Thompson Five theorems on Gorenstein global dimensions, Algebra and coding theory. Virtual conference in honor of Tariq Rizvi. Noncommutative rings and their applications VII, Université d’Artois, Lens, France, July 5–7, 2021. Virtual conference on quadratic forms, rings and codes, Université d’Artois, Lens, France, July 8, 2021, American Mathematical Society, 2023, pp. 67-78 | DOI | Zbl

[17] Lars Winther Christensen; Hans-Bjørn Foxby; Henrik Holm Derived category methods in commutative algebra (2022) (preprint)

[18] Stephen U. Chase Direct products of modules, Trans. Am. Math. Soc., Volume 97 (1960), pp. 457-473 | DOI | MR | Zbl

[19] Xiao-Wu Chen Homotopy equivalences induced by balanced pairs, J. Algebra, Volume 324 (2010) no. 10, pp. 2718-2731 | DOI | MR | Zbl

[20] Nan Qing Ding; Jianlong Chen The flat dimensions of injective modules, Manuscr. Math., Volume 78 (1993) no. 2, pp. 165-177 | DOI | MR | Zbl

[21] Nanqing Ding; Jianlong Chen Coherent rings with finite self-FP-injective dimension, Commun. Algebra, Volume 24 (1996) no. 9, pp. 2963-2980 | DOI | MR | Zbl

[22] Nanqing Ding; Yuanlin Li; Lixin Mao Strongly Gorenstein flat modules, J. Aust. Math. Soc., Volume 86 (2009) no. 3, pp. 323-338 | DOI | MR | Zbl

[23] Zhenxing Di; Jiaqun Wei; Xiaoxiang Zhang; Jianlong Chen Tilting subcategories with respect to cotorsion triples in abelian categories, Proc. R. Soc. Edinb., Sect. A, Math., Volume 147 (2017) no. 4, pp. 703-726 | DOI | MR | Zbl

[24] Edgar E. Enochs; Overtoun M. G. Jenda Relative homological algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter, 2000, xii+339 pages | DOI | MR | Zbl

[25] Edgar E. Enochs; Overtoun M. G. Jenda Gorenstein injective modules and Ext, Tsukuba J. Math., Volume 28 (2004) no. 2, pp. 303-309 | DOI | MR | Zbl

[26] Edgar E. Enochs; Overtoun M. G. Jenda Gorenstein injective and projective modules, Math. Z., Volume 220 (1995) no. 4, pp. 611-633 | DOI | MR | Zbl

[27] Edgar E. Enochs; Overtoun M. G. Jenda; Blas Torrecillas Gorenstein flat modules, J. Nanjing Univ., Math. Biq., Volume 10 (1993) no. 1, pp. 1-9 | MR | Zbl

[28] Ioannis Emmanouil On the finiteness of Gorenstein homological dimensions, J. Algebra, Volume 372 (2012), pp. 376-396 | DOI | MR | Zbl

[29] James Gillespie Model structures on modules over Ding–Chen rings, Homology Homotopy Appl., Volume 12 (2010) no. 1, pp. 61-73 | DOI | MR | Zbl

[30] James Gillespie Gorenstein complexes and recollements from cotorsion pairs, Adv. Math., Volume 291 (2016), pp. 859-911 | DOI | MR | Zbl

[31] James Gillespie On Ding injective, Ding projective and Ding flat modules and complexes, Rocky Mt. J. Math., Volume 47 (2017) no. 8, pp. 2641-2673 | DOI | MR | Zbl

[32] Rüdiger Göbel; Jan Trlifaj Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, 2006 | DOI | Zbl

[33] Henrik Holm Gorenstein homological dimensions, J. Pure Appl. Algebra, Volume 189 (2004) no. 1-3, pp. 167-193 | DOI | MR | Zbl

[34] Yasuo Iwanaga On rings with finite self-injective dimension, Commun. Algebra, Volume 7 (1979) no. 4, pp. 393-414 | DOI | MR | Zbl

[35] T. Y. Lam Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, 1999, xxiv+557 pages | DOI | MR | Zbl

[36] Yunxia Li; Jian Wang; Yuxian Geng; Jiangsheng Hu Noncommutative G-hereditary rings, J. Algebra Appl., Volume 20 (2021) no. 4, 2150052, 13 pages | DOI | MR | Zbl

[37] Pooyan Moradifar; Siamak Yassemi Infinitely generated Gorenstein tilting modules, Algebr. Represent. Theory, Volume 25 (2022) no. 6, pp. 1389-1427 | DOI | MR | Zbl

[38] Pooyan Moradifar; Jan Šaroch Finitistic dimension conjectures via Gorenstein projective dimension, J. Algebra, Volume 591 (2022), pp. 15-35 | DOI | MR | Zbl

[39] Joseph J. Rotman An introduction to homological algebra, Pure and Applied Mathematics, 85, Academic Press Inc., 1979, xi+376 pages | MR | Zbl

[40] Lance W. Small An example in Noetherian rings, Proc. Natl. Acad. Sci. USA, Volume 54 (1965), pp. 1035-1036 | DOI | MR | Zbl

[41] Junpeng Wang Ding projective dimension of Gorenstein flat modules, Bull. Korean Math. Soc., Volume 54 (2017) no. 6, pp. 1935-1950 | DOI | MR | Zbl

[42] Jiaqun Wei Relative singularity categories, Gorenstein objects and silting theory, J. Pure Appl. Algebra, Volume 222 (2018) no. 8, pp. 2310-2322 | DOI | MR | Zbl

[43] Jian Wang; Yunxia Li; Jiangsheng Hu When the kernel of a complete hereditary cotorsion pair is the additive closure of a tilting module, J. Algebra, Volume 530 (2019), pp. 94-113 | DOI | MR | Zbl

[44] Junpeng Wang; Gang Yang; Qingyu Shao; Xiaoxiang Zhang On Gorenstein global and Gorenstein weak global dimensions, Colloq. Math., Volume 174 (2023) no. 1, pp. 45-67 | DOI | MR | Zbl

[45] Junpeng Wang; Xiaoxiang Zhang On rings with finite Gorenstein weak global dimension, J. Algebra Appl., Volume 22 (2023) no. 5, 2350111, 15 pages | DOI | MR | Zbl

[46] Jan Šaroch; Jan Šťovíček Singular compactness and definability for Σ-cotorsion and Gorenstein modules, Sel. Math., New Ser., Volume 26 (2020) no. 2, 23, 40 pages | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique