We consider the controllability of a viscous incompressible fluid modeled by the Navier–Stokes system with a nonlinear viscosity. To prove the controllability to trajectories, we linearize around a trajectory and the corresponding linear system includes a nonlocal spatial term. Our main result is a Carleman estimate for the adjoint of this linear system. This estimate yields in a standard way the null controllability of the linear system and the local controllability to trajectories. Our method to obtain the Carleman estimate is completely general and can be adapted to other parabolic systems when a Carleman estimate is available.
Accepté le :
Publié le :
Sergio Guerrero 1 ; Takéo Takahashi 2
@article{CRMATH_2021__359_6_719_0, author = {Sergio Guerrero and Tak\'eo Takahashi}, title = {Controllability to trajectories of a {Ladyzhenskaya} model for a viscous incompressible fluid}, journal = {Comptes Rendus. Math\'ematique}, pages = {719--732}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.202}, language = {en}, }
TY - JOUR AU - Sergio Guerrero AU - Takéo Takahashi TI - Controllability to trajectories of a Ladyzhenskaya model for a viscous incompressible fluid JO - Comptes Rendus. Mathématique PY - 2021 SP - 719 EP - 732 VL - 359 IS - 6 PB - Académie des sciences, Paris DO - 10.5802/crmath.202 LA - en ID - CRMATH_2021__359_6_719_0 ER -
%0 Journal Article %A Sergio Guerrero %A Takéo Takahashi %T Controllability to trajectories of a Ladyzhenskaya model for a viscous incompressible fluid %J Comptes Rendus. Mathématique %D 2021 %P 719-732 %V 359 %N 6 %I Académie des sciences, Paris %R 10.5802/crmath.202 %G en %F CRMATH_2021__359_6_719_0
Sergio Guerrero; Takéo Takahashi. Controllability to trajectories of a Ladyzhenskaya model for a viscous incompressible fluid. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 719-732. doi : 10.5802/crmath.202. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.202/
[1] Null controllability of linear and semilinear nonlocal heat equations with an additive integral kernel, SIAM J. Control Optimization, Volume 57 (2019) no. 4, pp. 2924-2938 | DOI | MR | Zbl
[2] Mathematical and numerical foundations of turbulence models and applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 2014 | DOI | MR | Zbl
[3] Null controllability of the -dimensional Stokes system with scalar controls, J. Differ. Equations, Volume 246 (2009) no. 7, pp. 2908-2921 | DOI | MR | Zbl
[4] Null controllability of the heat equation with boundary Fourier conditions: the linear case, ESAIM, Control Optim. Calc. Var., Volume 12 (2006) no. 3, pp. 442-465 | DOI | Numdam | MR | Zbl
[5] Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optimization, Volume 45 (2006) no. 4, pp. 1399-1446 | DOI | MR | Zbl
[6] Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl., Volume 83 (2004) no. 12, pp. 1501-1542 | DOI | MR | Zbl
[7] Theoretical and numerical local null controllability of a Ladyzhenskaya–Smagorinsky model of turbulence, J. Math. Fluid Mech., Volume 17 (2015) no. 4, pp. 669-698 | DOI | MR | Zbl
[8] Exact controllability to the trajectories for parabolic PDEs with nonlocal nonlinearities, Math. Control Signals Syst., Volume 31 (2019) no. 3, pp. 415-431 | DOI | MR | Zbl
[9] Null controllability of linear heat and wave equations with nonlocal spatial terms, SIAM J. Control Optimization, Volume 54 (2016) no. 4, pp. 2009-2019 | DOI | MR | Zbl
[10] Controllability of evolution equations, Lecture Notes Series, Seoul, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996 | MR | Zbl
[11] New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems, Tr. Mat. Inst. Steklova, Volume 102 (1967), pp. 85-104 | MR | Zbl
[12] Turbulence in fluids, Fluid Mechanics and its Applications, 40, Kluwer Academic Publishers, 1997 | DOI | MR | Zbl
[13] Internal controllability for parabolic systems involving analytic non-local terms, Chin. Ann. Math., Ser. B, Volume 39 (2018) no. 2, pp. 281-296 | DOI | MR | Zbl
[14] Local controllability to stationary trajectories of a Burgers equation with nonlocal viscosity, J. Differ. Equations, Volume 264 (2018) no. 5, pp. 3664-3703 | DOI | MR | Zbl
[15] Mathematical biology. Vol. I: An introduction, Interdisciplinary Applied Mathematics, 17, Springer, 2002 | MR | Zbl
Cité par Sources :
Commentaires - Politique