Let and a weight . We consider the second-order Riesz transform associated with the Schrödinger operator , where with . We present three main results. First is bounded on the weighted Hardy space associated with if enjoys a certain stable property. Secondly is bounded on the weighted space associated with if also belongs to an appropriate doubling class. Thirdly is the dual of when .
Revised:
Accepted:
Published online:
Trong Nguyen Ngoc 1; Truong Le Xuan 1; Do Tan Duc 1
@article{CRMATH_2021__359_6_687_0, author = {Trong Nguyen Ngoc and Truong Le Xuan and Do Tan Duc}, title = {Boundedness of second-order {Riesz} transforms on weighted {Hardy} and $BMO$ spaces associated with {Schr\"odinger} operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {687--717}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.213}, language = {en}, }
TY - JOUR AU - Trong Nguyen Ngoc AU - Truong Le Xuan AU - Do Tan Duc TI - Boundedness of second-order Riesz transforms on weighted Hardy and $BMO$ spaces associated with Schrödinger operators JO - Comptes Rendus. Mathématique PY - 2021 SP - 687 EP - 717 VL - 359 IS - 6 PB - Académie des sciences, Paris DO - 10.5802/crmath.213 LA - en ID - CRMATH_2021__359_6_687_0 ER -
%0 Journal Article %A Trong Nguyen Ngoc %A Truong Le Xuan %A Do Tan Duc %T Boundedness of second-order Riesz transforms on weighted Hardy and $BMO$ spaces associated with Schrödinger operators %J Comptes Rendus. Mathématique %D 2021 %P 687-717 %V 359 %N 6 %I Académie des sciences, Paris %R 10.5802/crmath.213 %G en %F CRMATH_2021__359_6_687_0
Trong Nguyen Ngoc; Truong Le Xuan; Do Tan Duc. Boundedness of second-order Riesz transforms on weighted Hardy and $BMO$ spaces associated with Schrödinger operators. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 687-717. doi : 10.5802/crmath.213. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.213/
[1] Extrapolation for classes of weights related to a family of operators and applications, Potential Anal., Volume 38 (2013) no. 4, pp. 1207-1232 | DOI | MR | Zbl
[2] Schrödinger type singular integrals: weighted estimates for , Math. Nachr., Volume 289 (2016) no. 11-12, pp. 1341-1369 | DOI | MR | Zbl
[3] Regularity of maximal functions associated to a critical radius function, Rev. Unión Mat. Argent., Volume 60 (2019) no. 2, pp. 539-566 | DOI | MR | Zbl
[4] Weighted inequalities for Schrödinger type singular integrals, J. Fourier Anal. Appl., Volume 25 (2019) no. 3, pp. 595-632 | DOI | MR | Zbl
[5] Riesz transforms related to Schrödinger operators acting on type spaces, J. Math. Anal. Appl., Volume 357 (2009) no. 1, pp. 115-131 | DOI | MR | Zbl
[6] Classes of weights related to Schrödinger operators, J. Math. Anal. Appl., Volume 373 (2011) no. 2, pp. 563-579 | DOI | MR | Zbl
[7] Weighted inequalities for commutators of Schrödinger-Riesz transforms, J. Math. Anal. Appl., Volume 392 (2012) no. 1, pp. 6-22 | DOI | MR | Zbl
[8] criteria for generalised Calderón-Zygmund type operators on Hardy and BMO spaces associated to Schrödinger operators and applications, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (2018) no. 1, pp. 203-239 | MR | Zbl
[9] spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z., Volume 249 (2005) no. 2, pp. 329-356 | DOI | Zbl
[10] spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math., Volume 98 (2003) no. 1, pp. 5-38 | DOI | Zbl
[11] Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, 224, Springer, 1983 | MR | Zbl
[12] Estimates of the fundamental solution for magnetic Schrödinger operators and their applications, Tôhoku Math. J., Volume 52 (2000) no. 3, pp. 367-382 | MR | Zbl
[13] Weighted Hardy spaces and BMO spaces associated with Schrödinger operators, Math. Nachr., Volume 285 (2012) no. 17-18, pp. 2173-2207 | MR | Zbl
[14] Second order Riesz transforms associated to the Schrödinger operator for , J. Math. Anal. Appl., Volume 410 (2014) no. 1, pp. 391-402 | MR | Zbl
[15] Classes of weights and second order Riesz transforms associated to Schrödinger operators, J. Math. Soc. Japan, Volume 68 (2016) no. 2, pp. 489-533 | MR | Zbl
[16] Regularity estimates in Hölder spaces for Schrödinger operators via a theorem, Ann. Mat. Pura Appl., Volume 193 (2014) no. 2, pp. 561-589 | Zbl
[17] Analysis of heat equations on domains, London Mathematical Society Monographs, 31, London Mathematical Society, 2005 | MR | Zbl
[18] Solvability for Schrödinger equations with discontinuous coefficients, J. Funct. Anal., Volume 270 (2016) no. 1, pp. 88-133 | MR | Zbl
[19] Weighted Hardy Spaces Associated with Elliptic Operators. Part III: Characterisations of and the Weighted Hardy Space Associated with the Riesz Transform, J. Geom. Anal., Volume 29 (2019) no. 1, pp. 451-509 | DOI | MR | Zbl
[20] estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier, Volume 45 (1995) no. 2, pp. 513-546 | DOI | Numdam | MR | Zbl
[21] Estimates in for magnetic Schrödinger operators, Indiana Univ. Math. J., Volume 45 (1996) no. 3, pp. 817-841 | MR | Zbl
[22] Riesz transforms and Littlewood-Paley square function associated to Schrödinger operators on new weighted spaces, J. Aust. Math. Soc., Volume 105 (2018) no. 2, pp. 201-228 | DOI | MR | Zbl
[23] Harmonic analysis for some Schrödinger type operators, Ph. D. Thesis, Princeton University (USA) (1993)
Cited by Sources:
Comments - Policy