logo CRAS
Comptes Rendus. Mathématique
Functional anaysis, Harmonic analysis
A Rudin–de Leeuw type theorem for functions with spectral gaps
Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 797-803.

Our starting point is a theorem of de Leeuw and Rudin that describes the extreme points of the unit ball in the Hardy space H 1 . We extend this result to subspaces of H 1 formed by functions with smaller spectra. More precisely, given a finite set 𝒦 of positive integers, we prove a Rudin–de Leeuw type theorem for the unit ball of H 𝒦 1 , the space of functions fH 1 whose Fourier coefficients f ^(k) vanish for all k𝒦.

Received:
Revised:
Accepted:
Published online:
DOI: https://doi.org/10.5802/crmath.208
Classification: 30H10,  30J10,  42A32,  46A55
Konstantin M. Dyakonov 1, 2

1. Departament de Matemàtiques i Informàtica, IMUB, BGSMath, Universitat de Barcelona, Gran Via 585, E-08007 Barcelona, Spain
2. ICREA, Pg. Lluís Companys 23, E-08010 Barcelona, Spain
@article{CRMATH_2021__359_7_797_0,
     author = {Konstantin M. Dyakonov},
     title = {A {Rudin{\textendash}de} {Leeuw} type theorem for functions with spectral gaps},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {797--803},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {7},
     year = {2021},
     doi = {10.5802/crmath.208},
     zbl = {07390662},
     language = {en},
}
TY  - JOUR
AU  - Konstantin M. Dyakonov
TI  - A Rudin–de Leeuw type theorem for functions with spectral gaps
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 797
EP  - 803
VL  - 359
IS  - 7
PB  - Académie des sciences, Paris
UR  - https://zbmath.org/?q=an%3A07390662
UR  - https://doi.org/10.5802/crmath.208
DO  - 10.5802/crmath.208
LA  - en
ID  - CRMATH_2021__359_7_797_0
ER  - 
%0 Journal Article
%A Konstantin M. Dyakonov
%T A Rudin–de Leeuw type theorem for functions with spectral gaps
%J Comptes Rendus. Mathématique
%D 2021
%P 797-803
%V 359
%N 7
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.208
%R 10.5802/crmath.208
%G en
%F CRMATH_2021__359_7_797_0
Konstantin M. Dyakonov. A Rudin–de Leeuw type theorem for functions with spectral gaps. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 797-803. doi : 10.5802/crmath.208. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.208/

[1] S. Axler Linear algebra done right, Undergraduate Texts in Mathematics, Springer, 2015 | Zbl 1304.15001

[2] Ronald G. Douglas; Harold S. Shapiro; Allen L. Shields Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier, Volume 20 (1970) no. 1, pp. 37-76 | Article | MR 270196 | Zbl 0186.45302

[3] Konstantin M. Dyakonov The geometry of the unit ball in the space K θ 1 , Geometric problems of the theory of functions and sets, Kalinin. Gos. Univ., Kalinin, 1987, pp. 52-54 | Zbl 0822.46024

[4] Konstantin M. Dyakonov Moduli and arguments of analytic functions from subspaces in H p that are invariant under the backward shift operator, Sib. Math. J., Volume 31 (1990) no. 6, pp. 926-939 translation from Sib. Mat. Zh. 31, No. 6 (1990), 64–79 | MR 1097956 | Zbl 0728.32003

[5] Konstantin M. Dyakonov Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators, Proc. Am. Math. Soc., Volume 116 (1992) no. 4, pp. 1007-1013 | MR 1100649 | Zbl 0769.30022

[6] Konstantin M. Dyakonov Polynomials and entire functions: zeros and geometry of the unit ball, Math. Res. Lett., Volume 7 (2000) no. 4, pp. 393-404 | Article | MR 1783617 | Zbl 0973.30006

[7] Konstantin M. Dyakonov Lacunary polynomials in L 1 : geometry of the unit sphere, Adv. Math., Volume 381 (2021), 107607, 24 pages | MR 4205713 | Zbl 07319241

[8] Konstantin M. Dyakonov Nearly outer functions as extreme points in punctured Hardy spaces (2021) (https://arxiv.org/abs/2102.05857)

[9] Theodore W. Gamelin Uniform algebras, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1969 | MR 410387 | Zbl 0213.40401

[10] John B. Garnett Bounded analytic functions, Graduate Texts in Mathematics, 236, Springer, 2007 | MR 2261424 | Zbl 1106.30001

[11] Kenneth Hoffman Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962 | Zbl 0117.34001

[12] Paul Koosis Introduction to H p spaces, Cambridge Tracts in Mathematics, 115, Cambridge University Press, 1998 (with two appendices by V. P. Havin) | MR 1669574 | Zbl 1024.30001

[13] Karel de Leeuw; W. Rudin Extreme points and extremum problems in H 1 , Pac. J. Math., Volume 8 (1958), pp. 467-485 | Article | MR 98981 | Zbl 0084.27503

[14] Karel de Leeuw; Walter Rudin; John Wermer The isometries of some function spaces, Proc. Am. Math. Soc., Volume 11 (1960), pp. 694-698 | Article | MR 121646 | Zbl 0097.09802

[15] Nikolaĭ K. Nikolski Operators, Functions, and Systems: An Easy Reading. Volume 2: Model operators and systems, Mathematical Surveys and Monographs, 93, American Mathematical Society, 2002 | MR 1892647 | Zbl 1007.47002

Cited by Sources: