In 1999, Brylinski and Zhang computed the complex equivariant K-theory of the conjugation self-action of a compact, connected Lie group with torsion-free fundamental group. In this note we show it is possible to do so in under a page.
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.235
Jeffrey D. Carlson 1
@article{CRMATH_2021__359_7_795_0, author = {Jeffrey D. Carlson}, title = {The {K-theory} of the conjugation action}, journal = {Comptes Rendus. Math\'ematique}, pages = {795--796}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {7}, year = {2021}, doi = {10.5802/crmath.235}, zbl = {07390661}, language = {en}, }
Jeffrey D. Carlson. The K-theory of the conjugation action. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 795-796. doi : 10.5802/crmath.235. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.235/
[1] On the -theory of compact Lie groups, Topology, Volume 4 (1965) no. 1, pp. 95-99 | DOI | MR | Zbl
[2] Equivariant -theory of compact connected Lie groups, -Theory, Volume 20 (2000) no. 1, pp. 23-36 | DOI | MR | Zbl
[3] The Real -theory of compact Lie groups, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 10 (2014), 022, 26 pages | DOI | MR | Zbl
[4] On the -theory of Lie groups, Topology, Volume 6 (1967) no. 1, pp. 1-36 | DOI | MR
[5] The equivariant Künneth theorem in -theory, Topics in -theory (Lecture Notes in Mathematics), Volume 496, Springer, 1975, pp. 1-101 | DOI | MR
Cited by Sources:
Comments - Policy