Comptes Rendus
Geometry and Topology
The K-theory of the conjugation action
Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 795-796.

In 1999, Brylinski and Zhang computed the complex equivariant K-theory of the conjugation self-action of a compact, connected Lie group with torsion-free fundamental group. In this note we show it is possible to do so in under a page.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.235

Jeffrey D. Carlson 1

1 Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2021__359_7_795_0,
     author = {Jeffrey D. Carlson},
     title = {The {K-theory} of the conjugation action},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {795--796},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {7},
     year = {2021},
     doi = {10.5802/crmath.235},
     zbl = {07390661},
     language = {en},
}
TY  - JOUR
AU  - Jeffrey D. Carlson
TI  - The K-theory of the conjugation action
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 795
EP  - 796
VL  - 359
IS  - 7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.235
LA  - en
ID  - CRMATH_2021__359_7_795_0
ER  - 
%0 Journal Article
%A Jeffrey D. Carlson
%T The K-theory of the conjugation action
%J Comptes Rendus. Mathématique
%D 2021
%P 795-796
%V 359
%N 7
%I Académie des sciences, Paris
%R 10.5802/crmath.235
%G en
%F CRMATH_2021__359_7_795_0
Jeffrey D. Carlson. The K-theory of the conjugation action. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 795-796. doi : 10.5802/crmath.235. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.235/

[1] Michael F. Atiyah On the K-theory of compact Lie groups, Topology, Volume 4 (1965) no. 1, pp. 95-99 | DOI | MR | Zbl

[2] Jean-Luc Brylinski; Bin Zhang Equivariant K-theory of compact connected Lie groups, K-Theory, Volume 20 (2000) no. 1, pp. 23-36 | DOI | MR | Zbl

[3] Chi-Kwong Fok The Real K-theory of compact Lie groups, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 10 (2014), 022, 26 pages | DOI | MR | Zbl

[4] Luke Hodgkin On the K-theory of Lie groups, Topology, Volume 6 (1967) no. 1, pp. 1-36 | DOI | MR

[5] Luke Hodgkin The equivariant Künneth theorem in K-theory, Topics in K-theory (Lecture Notes in Mathematics), Volume 496, Springer, 1975, pp. 1-101 | DOI | MR

Cited by Sources:

Comments - Policy