In this paper we extend classical Titchmarsh theorems on the Fourier–Helgason transform of Lipschitz functions to the setting of -space on Damek–Ricci spaces. As consequences, quantitative Riemann–Lebesgue estimates are obtained and an integrability result for the Fourier–Helgason transform is developed extending ideas used by Titchmarsh in the one dimensional setting.
Révisé le :
Accepté le :
Publié le :
Salah El Ouadih 1 ; Radouan Daher 2
@article{CRMATH_2021__359_6_675_0, author = {Salah El Ouadih and Radouan Daher}, title = {Lipschitz {Conditions} in {Damek{\textendash}Ricci} {Spaces}}, journal = {Comptes Rendus. Math\'ematique}, pages = {675--685}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.211}, language = {en}, }
Salah El Ouadih; Radouan Daher. Lipschitz Conditions in Damek–Ricci Spaces. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 675-685. doi : 10.5802/crmath.211. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.211/
[1] Spherical analysis on harmonic groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 23 (1996) no. 4, pp. 643-679 | MR | Zbl
[2] The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Aust. Math. Soc., Volume 55 (1997) no. 3, pp. 405-424 | DOI | MR | Zbl
[3] A Paley–Wiener theorem on harmonic spaces, Colloq. Math., Volume 80 (1999) no. 2, pp. 211-233 | DOI | MR | Zbl
[4] Growth and integrability of Fourier transforms on Euclidean space, J. Fourier Anal. Appl., Volume 20 (2014) no. 6, pp. 1234-1256 | DOI | MR | Zbl
[5] Growth properties of Fourier transforms via moduli of continuity, J. Funct. Anal., Volume 255 (2008) no. 9, pp. 2265-2285 | DOI | MR | Zbl
[6] Growth properties of the Fourier transform, Filomat, Volume 26 (2012) no. 4, pp. 755-760 | DOI | MR | Zbl
[7] An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., Volume 8 (1998) no. 2, pp. 199-237 | DOI | MR | Zbl
[8] Titchmarsh theorems for Fourier transforms of Hölder-Lipschitz functions on compact homogeneous manifolds, Monatsh. Math., Volume 189 (2019) no. 1, pp. 23-49 | DOI | Zbl
[9] An analog of Titchmarsh’s theorem for the generalized Dunkl transform, J. Pseudo-Differ. Oper. Appl., Volume 7 (2016) no. 1, pp. 59-65 | DOI | MR | Zbl
[10] An analog of Titchmarsh’s theorem for the generalized Fourier-Bessel Transform, Lobachevskii J. Math., Volume 37 (2016) no. 2, pp. 114-119 | DOI | MR
[11] Best trigonometric approximation and Dini-Lipschitz classes, J. Pseudo-Differ. Oper. Appl., Volume 9 (2018) no. 4, pp. 903-912 | MR | Zbl
[12] Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal., Volume 2 (1992) no. 3, pp. 213-248 | DOI | MR | Zbl
[13] Dini Lipschitz functions for the Dunkl transform in the space , Rend. Circ. Mat. Palermo, Volume 64 (2015) no. 2, pp. 241-249 | MR | Zbl
[14] Characterization of Dini-Lipschitz functions for the Helgason Fourier transform on rank one symmetric spaces, Adv. Pure Appl. Math., Volume 7 (2016) no. 4, pp. 223-230 | MR | Zbl
[15] Jacobi–Dunkl Dini Lipschitz functions in the space , Appl. Math. E-Notes, Volume 16 (2016), pp. 88-98 | MR | Zbl
[16] Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on , C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 3, pp. 318-324 | DOI | MR | Zbl
[17] Fourier transforms of Dini-Lipschitz functions on rank 1 symmetric spaces, Mediterr. J. Math., Volume 13 (2016) no. 6, pp. 4401-4411 | DOI | MR
[18] Jacobi functions: the addition formula and the positivity of the dual convolution structure, Ark. Mat., Volume 17 (1979), pp. 139-151 | DOI | MR | Zbl
[19] Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions: Group theoretical aspects and applications (Mathematics and its Applications), Volume 18, Reidel Publishing Company, 1984, pp. 1-85 | Zbl
[20] The role of restriction theorems in harmonic analysis on harmonic groups, J. Funct. Anal., Volume 258 (2010) no. 7, pp. 2453-2482 | DOI | MR | Zbl
[21] Lipschitz conditions in Laguerre hypergroup, Mediterr. J. Math., Volume 14 (2017) no. 5, 191, 12 pages | MR | Zbl
[22] Approximation of functions in the Metric on noncompact rank 1 symmetric spaces, Algebra Anal., Volume 11 (1999) no. 1, pp. 244-270
[23] The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces, Sib. Math. J., Volume 46 (2005) no. 6, pp. 1108-1118 | DOI | Zbl
[24] Fourier and Radon transform on harmonic groups, Trans. Am. Math. Soc., Volume 361 (2009) no. 8, pp. 4269-4297 | MR | Zbl
[25] Espaces de Damek-Ricci, géométrie et analyse, Analyse sur les groupes de Lie et théorie des représentations (Séminaires et Congrès), Volume 7, Société Mathématique de France, 2003, pp. 45-100 | Zbl
[26] Introduction to the theory of Fourier integrals, Clarendon Press, 1937 | Zbl
[27] A note on smooth functions, Indag. Math., Volume 62 (1959), pp. 52-58 | DOI | Zbl
[28] Fourier transforms in spaces, Ph. D. Thesis, Chelsea College (UK) (1970)
[29] Fourier transforms of Lipschitz functions on compact groups, Ph. D. Thesis, McMaster University (Canada) (1974) | MR
[30] Fourier transforms of Dini-Lipschitz functions, Int. J. Math. Math. Sci., Volume 9 (1986) no. 2, pp. 301-312 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique