Comptes Rendus
Harmonic analysis
Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π]
[Conditions de Lipschitz pour la transformée de Fourier discrète généralisée associée à l'opérateur de Jacobi sur [0,π]]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 318-324.

L'objectif de cette Note est de prouver un analogue du théorème de Titchmarsh sur l'image sous la transformée de Fourier–Jacobi discrète d'un jeu de fonctions satisfaisant une condition de Lipschitz généralisée dans l'espace L2(α,β).

Our aim in this paper is to prove an analog of the classical Titchmarsh theorem on the image under the discrete Fourier–Jacobi transform of a set of functions satisfying a generalized Lipschitz condition in the space L2(α,β).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.01.017

Salah El Ouadih 1 ; Radouan Daher 1

1 Department of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II, Casablanca, Morocco
@article{CRMATH_2017__355_3_318_0,
     author = {Salah El Ouadih and Radouan Daher},
     title = {Lipschitz conditions for the generalized discrete {Fourier} transform associated with the {Jacobi} operator on [0,\protect\emph{\ensuremath{\pi}}]},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {318--324},
     publisher = {Elsevier},
     volume = {355},
     number = {3},
     year = {2017},
     doi = {10.1016/j.crma.2017.01.017},
     language = {en},
}
TY  - JOUR
AU  - Salah El Ouadih
AU  - Radouan Daher
TI  - Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π]
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 318
EP  - 324
VL  - 355
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2017.01.017
LA  - en
ID  - CRMATH_2017__355_3_318_0
ER  - 
%0 Journal Article
%A Salah El Ouadih
%A Radouan Daher
%T Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π]
%J Comptes Rendus. Mathématique
%D 2017
%P 318-324
%V 355
%N 3
%I Elsevier
%R 10.1016/j.crma.2017.01.017
%G en
%F CRMATH_2017__355_3_318_0
Salah El Ouadih; Radouan Daher. Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π]. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 318-324. doi : 10.1016/j.crma.2017.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.017/

[1] A. Abouelaz; R. Daher; M. El Hamma Generalization of Titchmarch's theorem for the Jacobi transform, Facta Univ., Ser. Math. Inform., Volume 28 (2013), pp. 43-51

[2] R. Askey; S. Wainger A convolution structure for Jacobi series, Am. J. Math., Volume 91 (1969), pp. 463-485

[3] R. Daher; M. El Hamma Dini Lipschitz functions for the Dunkl transform in the space L2(Rd,wk(x)dx), Rend. Circ. Mat. Palermo, Volume 64 (2015) no. 2, pp. 241-249

[4] R. Daher; M. Boujeddaine; M. El Hamma Generalization of Titchmarsh's theorem for the Fourier transform in the space L2(Rn), Afr. Math. (2016) | DOI

[5] P.L. Duren Theory of Hp Spaces, Academic Press, New York, 1970

[6] A. Erdélyi; W. Magnus; F. Oberttinger; F.G. Tricomi Higher Transcendental Functions, vol. II, McGraw–Hill, New York–Toronto–London, 1953 (Russian transl., 1974, Nauka, Moscow)

[7] M. Flensted-Jensen; T. Koornwinder The convolution structure for Jacobi function expansions, Ark. Mat., Volume 11 (1973), pp. 245-262

[8] S.S. Platonov The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces, Sib. Math. J., Volume 46 (2005) no. 6, pp. 1108-1118

[9] S.S. Platonov Fourier–Jacobi harmonic analysis and approximation of functions, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 78 (2014) no. 1, pp. 117-166

[10] A. Sveshnikov; A.N. Bogolyubov; V.V. Kravtsov Lectures on Mathematical Physics, Nauka, Moscow, 2004 (in Russian)

[11] G. Szegö Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1959 (Russian transl., 1962, Fizmatgiz, Moscow)

[12] A.N. Tikhonov; A.A. Samarskii Equations of Mathematical Physics, Gostekhteorizdat, Moscow, 1953

[13] E.C. Titchmarsh Introduction to the Theory of Fourier Integrals, Clarendon, Oxford, UK, 1948

[14] M.S. Younis Fourier Transforms of Lipschitz Functions on Compact Groups, McMaster University, Hamilton, Ontario, Canada, 1974 (Ph.D. Thesis)

Cité par Sources :

Commentaires - Politique