Comptes Rendus
Harmonic analysis
Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π]
[Conditions de Lipschitz pour la transformée de Fourier discrète généralisée associée à l'opérateur de Jacobi sur [0,π]]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 318-324.

L'objectif de cette Note est de prouver un analogue du théorème de Titchmarsh sur l'image sous la transformée de Fourier–Jacobi discrète d'un jeu de fonctions satisfaisant une condition de Lipschitz généralisée dans l'espace L2(α,β).

Our aim in this paper is to prove an analog of the classical Titchmarsh theorem on the image under the discrete Fourier–Jacobi transform of a set of functions satisfying a generalized Lipschitz condition in the space L2(α,β).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.01.017

Salah El Ouadih 1 ; Radouan Daher 1

1 Department of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II, Casablanca, Morocco
@article{CRMATH_2017__355_3_318_0,
     author = {Salah El Ouadih and Radouan Daher},
     title = {Lipschitz conditions for the generalized discrete {Fourier} transform associated with the {Jacobi} operator on [0,\protect\emph{\ensuremath{\pi}}]},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {318--324},
     publisher = {Elsevier},
     volume = {355},
     number = {3},
     year = {2017},
     doi = {10.1016/j.crma.2017.01.017},
     language = {en},
}
TY  - JOUR
AU  - Salah El Ouadih
AU  - Radouan Daher
TI  - Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π]
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 318
EP  - 324
VL  - 355
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2017.01.017
LA  - en
ID  - CRMATH_2017__355_3_318_0
ER  - 
%0 Journal Article
%A Salah El Ouadih
%A Radouan Daher
%T Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π]
%J Comptes Rendus. Mathématique
%D 2017
%P 318-324
%V 355
%N 3
%I Elsevier
%R 10.1016/j.crma.2017.01.017
%G en
%F CRMATH_2017__355_3_318_0
Salah El Ouadih; Radouan Daher. Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π]. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 318-324. doi : 10.1016/j.crma.2017.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.017/

[1] A. Abouelaz; R. Daher; M. El Hamma Generalization of Titchmarch's theorem for the Jacobi transform, Facta Univ., Ser. Math. Inform., Volume 28 (2013), pp. 43-51

[2] R. Askey; S. Wainger A convolution structure for Jacobi series, Am. J. Math., Volume 91 (1969), pp. 463-485

[3] R. Daher; M. El Hamma Dini Lipschitz functions for the Dunkl transform in the space L2(Rd,wk(x)dx), Rend. Circ. Mat. Palermo, Volume 64 (2015) no. 2, pp. 241-249

[4] R. Daher; M. Boujeddaine; M. El Hamma Generalization of Titchmarsh's theorem for the Fourier transform in the space L2(Rn), Afr. Math. (2016) | DOI

[5] P.L. Duren Theory of Hp Spaces, Academic Press, New York, 1970

[6] A. Erdélyi; W. Magnus; F. Oberttinger; F.G. Tricomi Higher Transcendental Functions, vol. II, McGraw–Hill, New York–Toronto–London, 1953 (Russian transl., 1974, Nauka, Moscow)

[7] M. Flensted-Jensen; T. Koornwinder The convolution structure for Jacobi function expansions, Ark. Mat., Volume 11 (1973), pp. 245-262

[8] S.S. Platonov The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces, Sib. Math. J., Volume 46 (2005) no. 6, pp. 1108-1118

[9] S.S. Platonov Fourier–Jacobi harmonic analysis and approximation of functions, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 78 (2014) no. 1, pp. 117-166

[10] A. Sveshnikov; A.N. Bogolyubov; V.V. Kravtsov Lectures on Mathematical Physics, Nauka, Moscow, 2004 (in Russian)

[11] G. Szegö Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1959 (Russian transl., 1962, Fizmatgiz, Moscow)

[12] A.N. Tikhonov; A.A. Samarskii Equations of Mathematical Physics, Gostekhteorizdat, Moscow, 1953

[13] E.C. Titchmarsh Introduction to the Theory of Fourier Integrals, Clarendon, Oxford, UK, 1948

[14] M.S. Younis Fourier Transforms of Lipschitz Functions on Compact Groups, McMaster University, Hamilton, Ontario, Canada, 1974 (Ph.D. Thesis)

  • Salah El Ouadih Sufficient conditions for the weighted integrability of Fourier–Helgason transforms in the Lp-space on Damek–Ricci spaces, Acta Scientiarum Mathematicarum (2025) | DOI:10.1007/s44146-025-00178-6
  • Othman Tyr; Radouan Daher Generalized Lipschitz conditions for absolute convergence of weighted Jacobi–Dunkl series, Boletín de la Sociedad Matemática Mexicana, Volume 30 (2024) no. 1 | DOI:10.1007/s40590-023-00581-5
  • Othman Tyr On the Fourier–Dunkl Coefficients of Generalized Lipschitz Classes on the Interval [1,1], Mediterranean Journal of Mathematics, Volume 21 (2024) no. 5 | DOI:10.1007/s00009-024-02710-4
  • Salah El Ouadih; Radouan Daher Generalized Lipschitz and Besov spaces in terms of decay of Dunkl transforms in the space L2(Rd,wl(x)dx), Rendiconti del Circolo Matematico di Palermo Series 2, Volume 73 (2024) no. 8, p. 2955 | DOI:10.1007/s12215-024-01086-4
  • Faouaz Saadi; Radouan Daher Fourier-Bessel series of Lipschitz functions in weighted spaces Lp([0,1],t2α+1dt), Analysis and Mathematical Physics, Volume 12 (2022) no. 6 | DOI:10.1007/s13324-022-00741-2
  • Iness Haouala Generalized Distributions and Jacobi-Dunkl Approximations, Results in Mathematics, Volume 77 (2022) no. 4 | DOI:10.1007/s00025-022-01701-9
  • S. El Ouadih Discrete Fourier–Laplace Transforms of Lipschitz Functions in the Spaces S(p,q)(σm1), Complex Analysis and Operator Theory, Volume 15 (2021) no. 4 | DOI:10.1007/s11785-021-01117-3
  • Salah El Ouadih; Radouan Daher Lipschitz Conditions in Damek–Ricci Spaces, Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, p. 675 | DOI:10.5802/crmath.211
  • S. El Ouadih; R. Daher On spherical analogues of the classical theorems of Titchmarsh, Integral Transforms and Special Functions, Volume 31 (2020) no. 12, p. 1010 | DOI:10.1080/10652469.2020.1784162

Cité par 9 documents. Sources : Crossref

Commentaires - Politique