[Conditions de Lipschitz pour la transformée de Fourier discrète généralisée associée à l'opérateur de Jacobi sur [0,π]]
L'objectif de cette Note est de prouver un analogue du théorème de Titchmarsh sur l'image sous la transformée de Fourier–Jacobi discrète d'un jeu de fonctions satisfaisant une condition de Lipschitz généralisée dans l'espace
Our aim in this paper is to prove an analog of the classical Titchmarsh theorem on the image under the discrete Fourier–Jacobi transform of a set of functions satisfying a generalized Lipschitz condition in the space
Accepté le :
Publié le :
Salah El Ouadih 1 ; Radouan Daher 1
@article{CRMATH_2017__355_3_318_0, author = {Salah El Ouadih and Radouan Daher}, title = {Lipschitz conditions for the generalized discrete {Fourier} transform associated with the {Jacobi} operator on [0,\protect\emph{\ensuremath{\pi}}]}, journal = {Comptes Rendus. Math\'ematique}, pages = {318--324}, publisher = {Elsevier}, volume = {355}, number = {3}, year = {2017}, doi = {10.1016/j.crma.2017.01.017}, language = {en}, }
TY - JOUR AU - Salah El Ouadih AU - Radouan Daher TI - Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π] JO - Comptes Rendus. Mathématique PY - 2017 SP - 318 EP - 324 VL - 355 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2017.01.017 LA - en ID - CRMATH_2017__355_3_318_0 ER -
%0 Journal Article %A Salah El Ouadih %A Radouan Daher %T Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π] %J Comptes Rendus. Mathématique %D 2017 %P 318-324 %V 355 %N 3 %I Elsevier %R 10.1016/j.crma.2017.01.017 %G en %F CRMATH_2017__355_3_318_0
Salah El Ouadih; Radouan Daher. Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π]. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 318-324. doi : 10.1016/j.crma.2017.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.017/
[1] Generalization of Titchmarch's theorem for the Jacobi transform, Facta Univ., Ser. Math. Inform., Volume 28 (2013), pp. 43-51
[2] A convolution structure for Jacobi series, Am. J. Math., Volume 91 (1969), pp. 463-485
[3] Dini Lipschitz functions for the Dunkl transform in the space
[4] Generalization of Titchmarsh's theorem for the Fourier transform in the space
[5] Theory of
[6] Higher Transcendental Functions, vol. II, McGraw–Hill, New York–Toronto–London, 1953 (Russian transl., 1974, Nauka, Moscow)
[7] The convolution structure for Jacobi function expansions, Ark. Mat., Volume 11 (1973), pp. 245-262
[8] The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces, Sib. Math. J., Volume 46 (2005) no. 6, pp. 1108-1118
[9] Fourier–Jacobi harmonic analysis and approximation of functions, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 78 (2014) no. 1, pp. 117-166
[10] Lectures on Mathematical Physics, Nauka, Moscow, 2004 (in Russian)
[11] Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1959 (Russian transl., 1962, Fizmatgiz, Moscow)
[12] Equations of Mathematical Physics, Gostekhteorizdat, Moscow, 1953
[13] Introduction to the Theory of Fourier Integrals, Clarendon, Oxford, UK, 1948
[14] Fourier Transforms of Lipschitz Functions on Compact Groups, McMaster University, Hamilton, Ontario, Canada, 1974 (Ph.D. Thesis)
- Sufficient conditions for the weighted integrability of Fourier–Helgason transforms in the
-space on Damek–Ricci spaces, Acta Scientiarum Mathematicarum (2025) | DOI:10.1007/s44146-025-00178-6 - Generalized Lipschitz conditions for absolute convergence of weighted Jacobi–Dunkl series, Boletín de la Sociedad Matemática Mexicana, Volume 30 (2024) no. 1 | DOI:10.1007/s40590-023-00581-5
- On the Fourier–Dunkl Coefficients of Generalized Lipschitz Classes on the Interval
, Mediterranean Journal of Mathematics, Volume 21 (2024) no. 5 | DOI:10.1007/s00009-024-02710-4 - Generalized Lipschitz and Besov spaces in terms of decay of Dunkl transforms in the space
, Rendiconti del Circolo Matematico di Palermo Series 2, Volume 73 (2024) no. 8, p. 2955 | DOI:10.1007/s12215-024-01086-4 - Fourier-Bessel series of Lipschitz functions in weighted spaces
, Analysis and Mathematical Physics, Volume 12 (2022) no. 6 | DOI:10.1007/s13324-022-00741-2 - Generalized Distributions and Jacobi-Dunkl Approximations, Results in Mathematics, Volume 77 (2022) no. 4 | DOI:10.1007/s00025-022-01701-9
- Discrete Fourier–Laplace Transforms of Lipschitz Functions in the Spaces
, Complex Analysis and Operator Theory, Volume 15 (2021) no. 4 | DOI:10.1007/s11785-021-01117-3 - Lipschitz Conditions in Damek–Ricci Spaces, Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, p. 675 | DOI:10.5802/crmath.211
- On spherical analogues of the classical theorems of Titchmarsh, Integral Transforms and Special Functions, Volume 31 (2020) no. 12, p. 1010 | DOI:10.1080/10652469.2020.1784162
Cité par 9 documents. Sources : Crossref
Commentaires - Politique