[Conditions de Lipschitz pour la transformée de Fourier discrète généralisée associée à l'opérateur de Jacobi sur [0,π]]
L'objectif de cette Note est de prouver un analogue du théorème de Titchmarsh sur l'image sous la transformée de Fourier–Jacobi discrète d'un jeu de fonctions satisfaisant une condition de Lipschitz généralisée dans l'espace .
Our aim in this paper is to prove an analog of the classical Titchmarsh theorem on the image under the discrete Fourier–Jacobi transform of a set of functions satisfying a generalized Lipschitz condition in the space .
Accepté le :
Publié le :
Salah El Ouadih 1 ; Radouan Daher 1
@article{CRMATH_2017__355_3_318_0, author = {Salah El Ouadih and Radouan Daher}, title = {Lipschitz conditions for the generalized discrete {Fourier} transform associated with the {Jacobi} operator on [0,\protect\emph{\ensuremath{\pi}}]}, journal = {Comptes Rendus. Math\'ematique}, pages = {318--324}, publisher = {Elsevier}, volume = {355}, number = {3}, year = {2017}, doi = {10.1016/j.crma.2017.01.017}, language = {en}, }
TY - JOUR AU - Salah El Ouadih AU - Radouan Daher TI - Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π] JO - Comptes Rendus. Mathématique PY - 2017 SP - 318 EP - 324 VL - 355 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2017.01.017 LA - en ID - CRMATH_2017__355_3_318_0 ER -
%0 Journal Article %A Salah El Ouadih %A Radouan Daher %T Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π] %J Comptes Rendus. Mathématique %D 2017 %P 318-324 %V 355 %N 3 %I Elsevier %R 10.1016/j.crma.2017.01.017 %G en %F CRMATH_2017__355_3_318_0
Salah El Ouadih; Radouan Daher. Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π]. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 318-324. doi : 10.1016/j.crma.2017.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.017/
[1] Generalization of Titchmarch's theorem for the Jacobi transform, Facta Univ., Ser. Math. Inform., Volume 28 (2013), pp. 43-51
[2] A convolution structure for Jacobi series, Am. J. Math., Volume 91 (1969), pp. 463-485
[3] Dini Lipschitz functions for the Dunkl transform in the space , Rend. Circ. Mat. Palermo, Volume 64 (2015) no. 2, pp. 241-249
[4] Generalization of Titchmarsh's theorem for the Fourier transform in the space , Afr. Math. (2016) | DOI
[5] Theory of Spaces, Academic Press, New York, 1970
[6] Higher Transcendental Functions, vol. II, McGraw–Hill, New York–Toronto–London, 1953 (Russian transl., 1974, Nauka, Moscow)
[7] The convolution structure for Jacobi function expansions, Ark. Mat., Volume 11 (1973), pp. 245-262
[8] The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces, Sib. Math. J., Volume 46 (2005) no. 6, pp. 1108-1118
[9] Fourier–Jacobi harmonic analysis and approximation of functions, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 78 (2014) no. 1, pp. 117-166
[10] Lectures on Mathematical Physics, Nauka, Moscow, 2004 (in Russian)
[11] Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1959 (Russian transl., 1962, Fizmatgiz, Moscow)
[12] Equations of Mathematical Physics, Gostekhteorizdat, Moscow, 1953
[13] Introduction to the Theory of Fourier Integrals, Clarendon, Oxford, UK, 1948
[14] Fourier Transforms of Lipschitz Functions on Compact Groups, McMaster University, Hamilton, Ontario, Canada, 1974 (Ph.D. Thesis)
Cité par Sources :
Commentaires - Politique