Let a reductive group act on a smooth affine complex algebraic variety Let be the Lie algebra of and be the moment map. If the moment map is flat, and for a generic character , the action of on is free, then we show that for very generic characters the corresponding quantum Hamiltonian reduction of the ring of differential operators is simple.
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.214
Akaki Tikaradze 1
@article{CRMATH_2021__359_6_739_0, author = {Akaki Tikaradze}, title = {Generic simplicity of quantum {Hamiltonian} reductions}, journal = {Comptes Rendus. Math\'ematique}, pages = {739--742}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.214}, zbl = {07390655}, language = {en}, }
Akaki Tikaradze. Generic simplicity of quantum Hamiltonian reductions. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 739-742. doi : 10.5802/crmath.214. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.214/
[1] Cherednik algebras and Hilbert schemes in characteristic , Represent. Theory, Volume 10 (2006), pp. 254-298 | DOI | MR | Zbl
[2] Geometry of the moment map for representations of quivers, Compos. Math., Volume 126 (2001) no. 3, pp. 257-293 | DOI | MR | Zbl
[3] Power reductivity over an arbitrary base of change, Doc. Math., Volume Extra Vol. (2010), pp. 171-195 (Andrei A. Suslin’s Sixtieth Birthday) | Zbl
[4] Completions of symplectic reflection algebras, Sel. Math., New Ser., Volume 18 (2012) no. 1, pp. 179-251 | DOI | MR | Zbl
[5] Ideals in deformation quantizations over , J. Pure Appl. Algebra, Volume 221 (2017) no. 1, pp. 229-236 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy