logo CRAS
Comptes Rendus. Mathématique
Algebra
Generic simplicity of quantum Hamiltonian reductions
Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 739-742.

Let a reductive group G act on a smooth affine complex algebraic variety X. Let 𝔤 be the Lie algebra of G and μ:T * (X)𝔤 * be the moment map. If the moment map is flat, and for a generic character χ:𝔤, the action of G on μ -1 (χ) is free, then we show that for very generic characters χ the corresponding quantum Hamiltonian reduction of the ring of differential operators D(X) is simple.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.214
Akaki Tikaradze 1

1 University of Toledo, Department of Mathematics & Statistics, Toledo, OH 43606, USA.
@article{CRMATH_2021__359_6_739_0,
     author = {Akaki Tikaradze},
     title = {Generic simplicity of quantum {Hamiltonian} reductions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {739--742},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {6},
     year = {2021},
     doi = {10.5802/crmath.214},
     zbl = {07390655},
     language = {en},
}
TY  - JOUR
TI  - Generic simplicity of quantum Hamiltonian reductions
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 739
EP  - 742
VL  - 359
IS  - 6
PB  - Académie des sciences, Paris
UR  - https://zbmath.org/?q=an%3A07390655
UR  - https://doi.org/10.5802/crmath.214
DO  - 10.5802/crmath.214
LA  - en
ID  - CRMATH_2021__359_6_739_0
ER  - 
%0 Journal Article
%T Generic simplicity of quantum Hamiltonian reductions
%J Comptes Rendus. Mathématique
%D 2021
%P 739-742
%V 359
%N 6
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.214
%R 10.5802/crmath.214
%G en
%F CRMATH_2021__359_6_739_0
Akaki Tikaradze. Generic simplicity of quantum Hamiltonian reductions. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 739-742. doi : 10.5802/crmath.214. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.214/

[1] Roman Bezrukavnikov; Michael Finkelberg; Victor Ginzburg Cherednik algebras and Hilbert schemes in characteristic p, Represent. Theory, Volume 10 (2006), pp. 254-298 | Article | MR: 2219114 | Zbl: 1130.14005

[2] William Crawley-Boevey Geometry of the moment map for representations of quivers, Compos. Math., Volume 126 (2001) no. 3, pp. 257-293 | Article | MR: 1834739 | Zbl: 1307.16007

[3] Vincent Franjou; Wilberd van der Kallen Power reductivity over an arbitrary base of change, Doc. Math., Volume Extra Vol. (2010), pp. 171-195 (Andrei A. Suslin’s Sixtieth Birthday) | Zbl: 1213.20044

[4] Ivan Losev Completions of symplectic reflection algebras, Sel. Math., New Ser., Volume 18 (2012) no. 1, pp. 179-251 | Article | MR: 2891864 | Zbl: 1272.16029

[5] Akaki Tikaradze Ideals in deformation quantizations over /p n , J. Pure Appl. Algebra, Volume 221 (2017) no. 1, pp. 229-236 | Article | MR: 3531472 | Zbl: 1360.16017

Cited by Sources: