In this paper we give a simple, short, and self-contained proof for a non-trivial upper bound on the probability that a random symmetric matrix is singular.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.215
Asaf Ferber 1
@article{CRMATH_2021__359_6_743_0, author = {Asaf Ferber}, title = {Singularity of random symmetric matrices {\textendash} simple proof}, journal = {Comptes Rendus. Math\'ematique}, pages = {743--747}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.215}, zbl = {07390656}, language = {en}, }
Asaf Ferber. Singularity of random symmetric matrices – simple proof. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 743-747. doi : 10.5802/crmath.215. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.215/
[1] On the singularity of random symmetric matrices (2019) (https://arxiv.org/abs/1904.11478) | Zbl
[2] Random symmetric matrices are almost surely nonsingular, Duke Math. J., Volume 135 (2006) no. 2, pp. 395-413 | MR | Zbl
[3] Singularity of random symmetric matrices—a combinatorial approach to improved bounds, Forum Math. Sigma, Volume 7 (2019), e22 | MR | Zbl
[4] On the counting problem in inverse Littlewood–Offord theory (2019) (https://arxiv.org/abs/1904.10425) | Zbl
[5] Invertibility of adjacency matrices for random -regular graphs (2018) (https://arxiv.org/abs/1807.06465)
[6] Inverse Littlewood–Offord problems and the singularity of random symmetric matrices, Duke Math. J., Volume 161 (2012) no. 4, pp. 545-586 | MR | Zbl
[7] Invertibility of symmetric random matrices, Random Struct. Algorithms, Volume 44 (2014) no. 2, pp. 135-182 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique