logo CRAS
Comptes Rendus. Mathématique
Équations aux dérivées partielles
L p -versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative
[Versions L p des inégalités généralisées de Korn pour les champs de tenseurs incompatibles de dimension quelconque avec dérivée extérieure p-intégrable]
Comptes Rendus. Mathématique, Tome 359 (2021) no. 6, pp. 749-755.

On montre pour n2 et 1<p< une version L p de l’inégalité généralisée de Korn pour tous les champs de tenseurs incompatibles et p-intégrables P:Ω n×n , avec rotationnel généralisé p-intégrable et avec zéro trace tangentielle Pτ l =0 sur Ω, où {τ l } l=1,...,n-1 est un repère tangent sur Ω. Plus précisément on a :

P L p Ω, n×n csymP L p Ω, n×n +Curl ̲P L p Ω,𝔰𝔬(n) n ,

où les composantes du rotationnel généralisé s’écrivent (Curl ̲P) ijk := i P kj - j P ki et c=c(n,p,Ω)>0.

For n2 and 1<p< we prove an L p -version of the generalized Korn-type inequality for incompatible, p-integrable tensor fields P:Ω n×n having p-integrable generalized Curl ̲ and generalized vanishing tangential trace Pτ l =0 on Ω, denoting by {τ l } l=1,...,n-1 a moving tangent frame on Ω, more precisely we have:

P L p Ω, n×n csymP L p Ω, n×n +Curl ̲P L p Ω,𝔰𝔬(n) n ,

where the generalized Curl ̲ is given by (Curl ̲P) ijk := i P kj - j P ki and c=c(n,p,Ω)>0

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.216
Classification : 35A23,  35B45,  35Q74,  46E35
Peter Lewintan 1 ; Patrizio Neff 1

1. Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany
@article{CRMATH_2021__359_6_749_0,
     author = {Peter Lewintan and Patrizio Neff},
     title = {$L^p$-versions of generalized {Korn} inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {749--755},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {6},
     year = {2021},
     doi = {10.5802/crmath.216},
     zbl = {07390657},
     language = {en},
}
TY  - JOUR
AU  - Peter Lewintan
AU  - Patrizio Neff
TI  - $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 749
EP  - 755
VL  - 359
IS  - 6
PB  - Académie des sciences, Paris
UR  - https://zbmath.org/?q=an%3A07390657
UR  - https://doi.org/10.5802/crmath.216
DO  - 10.5802/crmath.216
LA  - en
ID  - CRMATH_2021__359_6_749_0
ER  - 
%0 Journal Article
%A Peter Lewintan
%A Patrizio Neff
%T $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative
%J Comptes Rendus. Mathématique
%D 2021
%P 749-755
%V 359
%N 6
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.216
%R 10.5802/crmath.216
%G en
%F CRMATH_2021__359_6_749_0
Peter Lewintan; Patrizio Neff. $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative. Comptes Rendus. Mathématique, Tome 359 (2021) no. 6, pp. 749-755. doi : 10.5802/crmath.216. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.216/

[1] Philippe G. Ciarlet On Korn’s inequality, Chin. Ann. Math., Volume 31 (2010) no. 5, pp. 607-618 | Article | MR 2726058 | Zbl 1200.49039

[2] Philippe G. Ciarlet Linear and Nonlinear Functional Analysis with Applications, Other Titles in Applied Mathematics, 130, Society for Industrial and Applied Mathematics (SIAM), 2013 | Zbl 1293.46001

[3] Philippe G. Ciarlet; Patrick jun. Ciarlet Another approach to linearized elasticity and a new proof of Korn’s inequality, Math. Models Methods Appl. Sci., Volume 15 (2005) no. 2, pp. 259-271 | Article | MR 2119999 | Zbl 1084.74006

[4] Philippe G. Ciarlet; Maria Malin; Cristinel Mardare On a vector version of a fundamental lemma of J. L. Lions, Chin. Ann. Math., Volume 39 (2018) no. 1, pp. 33-46 | Article | MR 3742931 | Zbl 1398.46028

[5] Giuseppe Geymonat; Pierer-Marie Suquet Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci., Volume 8 (1986) no. 2, pp. 206-222 | Article | MR 845925 | Zbl 0616.73010

[6] Peter Lewintan; Patrizio Neff Nečas–Lions lemma revisited: An L p -version of the generalized Korn inequality for incompatible tensor fields, Math. Methods Appl. Sci. (2021), pp. 1-12 | Article | Zbl 07393717

[7] Patrizio Neff; Ingo Münch Curl bounds Grad on SO(3), ESAIM, Control Optim. Calc. Var., Volume 14 (2008) no. 1, pp. 148-159 | Article | Numdam | MR 2375754 | Zbl 1139.74008

[8] Patrizio Neff; Dirk Pauly; Karl-Josef Witsch Maxwell meets Korn: A new coercive inequality for tensor fields in n×n with square-integrable exterior derivative, Math. Methods Appl. Sci., Volume 35 (2012) no. 1, pp. 65-71 | Article | MR 2871807 | Zbl 1255.35220

[9] Bartel L. van der Waerden Algebra. Volume II, Springer, 2003 (Based in part on lectures by E. Artin and E. Noether. Transl. from the German 5th ed. by John R. Schulenberger. 1st paperback ed.) | Zbl 1032.00002

Cité par Sources :