For and we prove an -version of the generalized Korn-type inequality for incompatible, -integrable tensor fields having -integrable generalized and generalized vanishing tangential trace on , denoting by a moving tangent frame on , more precisely we have:
where the generalized is given by and
On montre pour et une version de l’inégalité généralisée de Korn pour tous les champs de tenseurs incompatibles et -intégrables , avec rotationnel généralisé -intégrable et avec zéro trace tangentielle sur , où est un repère tangent sur . Plus précisément on a :
où les composantes du rotationnel généralisé s’écrivent et .
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.216
Peter Lewintan 1; Patrizio Neff 1
@article{CRMATH_2021__359_6_749_0, author = {Peter Lewintan and Patrizio Neff}, title = {$L^p$-versions of generalized {Korn} inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative}, journal = {Comptes Rendus. Math\'ematique}, pages = {749--755}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.216}, zbl = {07390657}, language = {en}, }
TY - JOUR AU - Peter Lewintan AU - Patrizio Neff TI - $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative JO - Comptes Rendus. Mathématique PY - 2021 SP - 749 EP - 755 VL - 359 IS - 6 PB - Académie des sciences, Paris DO - 10.5802/crmath.216 LA - en ID - CRMATH_2021__359_6_749_0 ER -
%0 Journal Article %A Peter Lewintan %A Patrizio Neff %T $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative %J Comptes Rendus. Mathématique %D 2021 %P 749-755 %V 359 %N 6 %I Académie des sciences, Paris %R 10.5802/crmath.216 %G en %F CRMATH_2021__359_6_749_0
Peter Lewintan; Patrizio Neff. $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 749-755. doi : 10.5802/crmath.216. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.216/
[1] On Korn’s inequality, Chin. Ann. Math., Volume 31 (2010) no. 5, pp. 607-618 | DOI | MR | Zbl
[2] Linear and Nonlinear Functional Analysis with Applications, Other Titles in Applied Mathematics, 130, Society for Industrial and Applied Mathematics (SIAM), 2013 | Zbl
[3] Another approach to linearized elasticity and a new proof of Korn’s inequality, Math. Models Methods Appl. Sci., Volume 15 (2005) no. 2, pp. 259-271 | DOI | MR | Zbl
[4] On a vector version of a fundamental lemma of J. L. Lions, Chin. Ann. Math., Volume 39 (2018) no. 1, pp. 33-46 | DOI | MR | Zbl
[5] Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci., Volume 8 (1986) no. 2, pp. 206-222 | DOI | MR | Zbl
[6] Nečas–Lions lemma revisited: An -version of the generalized Korn inequality for incompatible tensor fields, Math. Methods Appl. Sci. (2021), pp. 1-12 | DOI | Zbl
[7] bounds on , ESAIM, Control Optim. Calc. Var., Volume 14 (2008) no. 1, pp. 148-159 | DOI | Numdam | MR | Zbl
[8] Maxwell meets Korn: A new coercive inequality for tensor fields in with square-integrable exterior derivative, Math. Methods Appl. Sci., Volume 35 (2012) no. 1, pp. 65-71 | DOI | MR | Zbl
[9] Algebra. Volume II, Springer, 2003 (Based in part on lectures by E. Artin and E. Noether. Transl. from the German 5th ed. by John R. Schulenberger. 1st paperback ed.) | Zbl
Cited by Sources:
Comments - Policy